Python | Pandas Series.str.match ()

Python Methods and Functions | Regular Expressions

Series.str can be used to access the values ​​of a series as strings and apply multiple methods to it. Series.str.match() Pandas Series.str.match() is used to determine if each line in the underlying data of a given series object to a regular expression.

Syntax: Series.str.match (pat, case = True, flags = 0, na = nan)

Parameter:
pat: Regular expression pattern with capturing groups.
case: If True, case sensitive
flags: A re module flag, for example re.IGNORECASE.
na: default NaN, fill value for missing values ​​

Returns: Series / array of boolean values ​​

Example # 1: Use Series.str .match () to match the supplied regular expressions against a string in the underlying data of this series object.

# import pandas as pd

import pandas as pd

 
# import re for regular expressions

import re

 
# Create series

sr = pd.Series ([ `New_York` , `Lisbon` , ` Tokyo` , `Paris` , ` Munich` ])

 
# Create an index

idx < / code> = [ `City 1` , ` City 2` , `City 3` , `City 4` , ` City 5` ]

 
# set index

sr.index = idx

 
# Print series

print (sr)

Output:

Now we will use Series.str.match () to matching the passed regular expressions with a string in the underlying data of this series object.

# matches either Tokyo or Paris

result = sr. str . match (pat = ` (Tokyo) | (Paris) ` )

  
# print the result

print (result)

Output:

As we can see in the output, Series.str.match () returned a series of logical their values. It contains True for those values ​​that match successfully otherwise it contains the value False .

Example # 2: Use Series.str.match () to match the supplied regular expressions against a string in the underlying data of this series object.

# import pandas as pd

import pandas as pd

 
# import re for regular expressions

import re

 
# Create a series

sr = pd.Series ([ `Mike` , `Alessa` , ` Nick` , ` Kim` , `Britney` ])

 
# Create an index

idx = [ `Name 1` , ` Name 2` , ` Name 3` , `Name 4` , `Name 5` ]

 
# set index

sr .index = idx

 
# Print series

print (sr)

Output:

We will now use Series.str.match () to match the supplied regular expressions against a string in the underlying data of this series object.

# match capitalized groups
# followed by & # 39; i & # 39; and any other character

result = sr . str . match (pat = `([AZ] i.)` )

  
# print the result

print (result )

Output:

As we can see in the output, Series.str.match () returned a series of booleans. It contains True for those values ​​that match successfully, otherwise it contains False .





Get Solution for free from DataCamp guru