scipy stats.hypsecant () | python

NumPy | Python Methods and Functions

scipy.stats.hypsecant () is a hyperbolic secant continuous random variable. to complete its specifications, it is defined by a standard format and some form parameters. The probability density is defined in "standardized" form.

>

Parameters :

 - & gt;  α:  scale - & gt;  β:  shape - & gt;  μ:  location 

Code # 1: Generating a hyperbolic secant continuous random variable

from scipy.stats import hypsecant 

 

numargs = hypsecant.numargs

[] = [ 0.7 , 0.4 ] * numargs

rv = hypsecant ()

 

print ( "RV:" , rv ) 

Output:

 RV: scipy.stats._distn_infrastructure.rv_frozen object at 0x0000021FB588A160 

Code # 2: Hyperbolic Secant Continuous Variables and Probability Distribution

Exit:

 Random Variates: [0.50120826 0.60225476 -0.38307417 7.15799321 -1.1929279 -2.03152053 -0.07410646 1.79859597 -3.14724818 2.03731139 ] Probability Distribution: [0.31829397 0.31639377 0.31141785 0.30360449 0.2933099 0.28097073 0.26706289 0.25206321 0.23641852 0.22052427] 

Code # 3: Graphical representation.

import numpy as np

quantile = np.arange ( 0.01 , 1 , 0.1 )

  
# Random Variants

R = hypsecant .rvs (scale = 2 , size = 10 )

print ( " Random Variates: " , R)

  
# PDF

R = hypsecant .pdf (quantile, loc = 0 , scale = 1 )

print ( "Probability Distribution:" , R)

import numpy as np

import matplotlib.pyplot as plt

  

distribution = np.linspace ( 0 , np.minimum (rv.dist.b, 3 ))

pr int ( "Distribution:" , distribution)

 

plot = plt.plot (distribution, rv.pdf (distribution))

Exit :

 Distribution: [0. 0.06122449 0.12244898 0.18367347 0.24489796 0.30612245 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449 0.67346939 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633 1.10204082 1.16326531 1.2244898 1.28571429 1.34693878 1.40816327 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714 2.20408163 2.26530612 2.32653061 2.3877551 2.44897959 2.51020408 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102 2.93877551 3. ] 

Code # 4: Various Positional Arguments

import matplotlib. pyplot as plt

import numpy as np

 

x = np.linspace ( 0 , 5 , 100 )

 
# Various positional arguments

y1 = hypsecant .pdf (x, 1 , 3 )

y2 = hypsecant .pdf (x , 1 , 4 )

plt.plot (x, y1, " * " , x, y2, " r-- " )

Output:





Get Solution for free from DataCamp guru