scipy stats.gumbel_r () | python



Parameters:
– & gt; q: lower and upper tail probability
– & gt; x: quantiles
– & gt; loc: [optional] location parameter. Default = 0
– & gt; scale: [optional] scale parameter. Default = 1
– & gt; size: [tuple of ints, optional] shape or random variates.
– & gt; moments: [optional] composed of letters [`mvsk`]; `m` = mean, `v` = variance, `s` = Fisher`s skew and `k` = Fisher`s kurtosis. (default = `mv`).

Results: Right-Skewed Gumbel continuous random variable

Code # 1: Create right-hand continuous Gumbel random variable

from scipy.stats import gumbel_r 

 

numargs = gumbel_r .numargs

[] = [ 0.7 ,] * numargs

rv = gumbel_r ()

  

print ( "RV:" , rv) 

Output:

 RV: & lt; scipy.stats._distn_infrastructure.rv_frozen object at 0x000001E39A4600F0 & gt; 

Code # 2: Right-Hand Gumbel Random Variations and Probability Distribution

import numpy as np

quantile = np.arange ( 0.01 , 1 , 0.1 )

 
# Random Variants

R = gumbel_r .rvs (scale = 2 , size = 10 )

print ( " Random Variates: " , R)

 
# PDF

R = gumbel_r .pdf (quantile, loc = 0 , scale = 1 )

print ( "Probability Distribution:" , R)

Output:

 Random Variates: [0.55349097 -0.36709655 -0.25581806 -0.81730142 0.28719592 - 0.30831366 -2.69858598 -0.23586469 -1.01965346 6.44132721] Probability Distribution: [0.36786111 0.36573943 0.36038433 0.35223844 0.34175873 0.32939568 0.3 1557754 0.3006994 0.28511631 0.26913983] 

Code # 3: Graphic representation.

import numpy as np

import matplotlib.pyplot as plt

 

distribution = np.linspace ( 0 , np.minimum (rv.dist. b, 3 ))

print ( "Distribution:" , distribution)

 

plot = plt.plot (distribution, rv.pdf (distribution))

Output:

 Distribution: [0. 0.06122449 0.12244898 0.18367347 0.24489796 0.30612245 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449 0.67346939 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633 1.10204082 1.16326531 1.2244898 1.28571429 1.34693878 1.40816327 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714 2.20408163 2.26530612 2.32653061 2.3877551 2.44897959 2.51020408 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102 2.93877551 3. ] 

Code # 4: Various Positional Arguments

import matplotlib. pyplot as plt

import < code class = "plain"> numpy as np

 

x = np.linspace ( 0 , 5 , 100 )

 
# Various positional arguments

y1 = gumbel_r .pdf (x, 1 , 3 )

y2 = gumbel_r .pdf (x , 1 , 4 )

plt.plot (x, y1, " * " , x, y2, " r-- " )

Output: