👻 Check our latest review to choose the best laptop for Machine Learning engineers and Deep learning tasks!
scipy.stats.foldcauchy () is a folded continuous Cauchy random variable that is defined in a standard format and with some shape parameters to complete its specification.

Parameters:
- & gt; q: lower and upper tail probability
- & gt; a: shape parameters
- & gt; x: quantiles
- & gt; loc: [optional] location parameter. Default = 0
- & gt; scale: [optional] scale parameter. Default = 1
- & gt; size: [tuple of ints, optional] shape or random variates.
- & gt; moments: [optional] composed of letters [’mvsk’]; ’m’ = mean, ’v’ = variance, ’s’ = Fisher’s skew and ’k’ = Fisher’s kurtosis. (default = ’mv’).Results: folded Cauchy continuous random variable
Code # 1: Create a folded Cauchy continuous random variable Cauchy random variable
< p> print ( "RV:" , rv) |
Exit:
RV: & lt; scipy.stats._distn_infrastructure.rv_frozen object at 0x0000018D55D8E160 & gt;
Code # 2: the folded Cauchy random variables and the probability distribution function.
import
numpy as np
quantile
=
np.arange (
0.01
,
1
,
0.1
)
# Random Variants
R
=
foldcauchy.rvs (a, scale
=
2
, size
=
10
)
print
(
"Random Variates:"
, R)
# PDF
R
=
foldcauchy.pdf (a, quantile, loc
=
0
, scale
=
1
)
print
(
"Probability Distribution:"
, R)
Output:
Random Variates: [1.7445128 2.82630984 0.81871044 5.19668279 7.81537565 1.67855736 3.35417067 0.13838753 1.29145462 1.90601065] Probability Distribution: [0.42727064 0.42832192 0.43080143 0.43385803 0.43622229 0.43639823 0.4 3294602 0.42480391 0.41154712 0.3934792]
Code # 3: Graphic representation.
import
numpy as np
import
matplotlib.pyplot as plt
distribution
=
np.linspace (
0
, np.minimum (rv.dist. b,
3
))
print
(
"Distribution:"
, distribution)
plot
=
plt.plot (distributio n, rv.pdf (distribution))
Output:
Distribution: [0. 0.06122449 0.12244898 0.18367347 0.24489796 0.30612245 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449 0.67346939 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633 1.10204082 1.16326531 1.2244898 1.28571429 1.34693878 1.40816327 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714 2.20408163 2.26530612 2.32653061 2.3877551 2.44897959 2.51020408 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102 2.93877551 3. ]
Code # 4: Various Positional Arguments
|
Output:
👻 Read also: what is the best laptop for engineering students?
We hope this article has helped you to resolve the problem. Apart from scipy stats.foldcauchy () | python, check other ast Python module-related topics.
Want to excel in Python? See our review of the best Python online courses 2023. If you are interested in Data Science, check also how to learn programming in R.
By the way, this material is also available in other languages:
- Italiano scipy stats.foldcauchy () | python
- Deutsch scipy stats.foldcauchy () | python
- Français scipy stats.foldcauchy () | python
- Español scipy stats.foldcauchy () | python
- Türk scipy stats.foldcauchy () | python
- Русский scipy stats.foldcauchy () | python
- Português scipy stats.foldcauchy () | python
- Polski scipy stats.foldcauchy () | python
- Nederlandse scipy stats.foldcauchy () | python
- 中文 scipy stats.foldcauchy () | python
- 한국어 scipy stats.foldcauchy () | python
- 日本語 scipy stats.foldcauchy () | python
- हिन्दी scipy stats.foldcauchy () | python
Rome | 2023-02-05
I was preparing for my coding interview, thanks for clarifying this - scipy stats.foldcauchy () | python in Python is not the simplest one. I am just not quite sure it is the best method
Rome | 2023-02-05
Maybe there are another answers? What scipy stats.foldcauchy () | python exactly means?. Checked yesterday, it works!
Massachussetts | 2023-02-05
stat Python module is always a bit confusing 😭 scipy stats.foldcauchy () | python is not the only problem I encountered. I am just not quite sure it is the best method