scipy stats.fatiguelife () | python

NumPy | Python Methods and Functions

scipy.stats.fatiguelife () — continuous random variable for fatigue (Birnbaum-Sanders), which is defined by a standard format and some form parameters to complete its specification.

Parameters:
q: lower and upper tail probability
x: quantiles
loc: [optional] location parameter. Default = 0
scale: [optional] scale parameter. Default = 1
size: [tuple of ints, optional] shape or random variates.
moments: [optional] composed of letters [`mvsk `]; `m` = mean, `v` = variance, `s` = Fisher`s skew and `k` = Fisher`s kurtosis. (default = `mv`).

Results: fatigue-life (Birnbaum-Sanders) continuous random variable

Code # 1: Generating a continuous random fatigue life

from scipy.stats import fatiguelife

 

numargs = fatiguelife.numargs

[a] = [ 0.7 ,] * numargs

rv = fatiguelife (a)

  

print ( " RV: " , rv) 

Output:

 RV: & lt; scipy.stats._distn_infrastructure.rv_frozen object at 0x0000018D567B8400 & gt; 

Code # 2: Random Variations in Fatigue and Probability Distribution.

import numpy as np

quantile = np.arange ( 0.01 , 1 , 0.1 )

 
# Random Variants

R = fatiguelife.rvs (a, scale = 2 , size = 10 )

 print ( "Random Variates:" , R)

 
# PDF

R = fatiguelife.pdf (a, quantile, loc = 0 , scale = 1 )

print ( "Probability Distribution:" , R)

Output:

 Random Variates: [1.5759368 1.73788302 2.31297609 1.0005871 1.49635022 11.98492239 2.51785146 4.0096255 0.5654246 0.97502712 ] Probability Distribution: [3.74431292e-278 2.59381847e-002 6.41771315e-001 9.56754833e-001 9.63413710e-001 8 .86691481e-001 7.98585419e-001 7.17860186e-001 6.48103032e-001 5.88743459e-001] 

Code # 3: Graphic representation.

import numpy as np

import matplotlib.pyplot as plt

 

distribution = np.linspace ( 0 , np.minimum (rv.dist.b, 3 ))

print ( "Distribution:" , distribution)

 

plot = plt.plot (distribution, rv.pdf (distribution))

Output:

 Distribution: [0. 0.06122449 0.12244898 0.18367347 0.24489796 0.30612245 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449 0.67346939 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633 1.10204082 1.16326531 1.2244898 1.28571429 1.34693878 1.40816327 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714 2.20408163 2.26530612 2.32653061 2.3877551 2.44897959 2.51020408 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102 2.93877551 3. ] 

Code # 4: Various Positional Arguments

import matplotlib. pyplot as plt

import numpy as np

 

x = np.linspace ( 0 , 5 , 100 )

 
# Various positional arguments

y1 = fatiguelife.pdf (x, 1 , 3 )

y2 = fatiguelife.pdf (x, 1 , 4 )

plt.plot (x, y1, " * " , x, y2, " r-- " )

Output:





Get Solution for free from DataCamp guru