Change language

# scipy stats.burr () | python

Parameters:
q: lower and upper tail probability
a, b: shape parameters
x: quantiles
loc: [optional] location parameter. Default = 0
scale: [optional] scale parameter. Default = 1
size: [tuple of ints, optional] shape or random variates.
moments: [optional] composed of letters [’mvsk ’]; ’m’ = mean, ’v’ = variance, ’s’ = Fisher’s skew and ’k’ = Fisher’s kurtosis. (default = ’mv’).

Results: burr continuous random variable

Code # 1: Generating a continuous random variable

` `

` # scipy import from scipy.stats import burr   numargs = burr.numargs [a, b] = [ 0.6 ,] * numargs rv = burr (a, b)    print ( "RV:" , rv) `

Output:

` RV: "scipy.stats._distn_infrastructure.rv_frozen object at 0x0000029482FCC438" `

Code # 2: beta random variations and probability distribution function.

` `

` import numpy as np quantile = np.arange ( 0.01 , 1 , 0.1 )   # Random Variants R = burr.rvs (a, b, scale = 2 , size = 10 ) p rint ( "Random Variates:" , R)   # PDF R = burr.pdf (quantile, a, b, loc = 0 , scale = 1 ) print ( "Probability Distribution:" , R) `

Output:

` Random Variates: [1.51241629e-04 3.47964171e-01 2.94154949e-02 5.10430246e-02 1.82413279e-02 2.12564883e + 00 3.51099766e-05 2.32907895e + 01 6.24723647e-04 2.79124934e-01] Probability Distribution: [6.21994723 1.01375434 0.57575653 0.40021455 0.30462819 0.24439598 0.20298921 0.17281591 0.14988693 0.1319016] `

Code # 3: Graphic representation.

` `

` import numpy as np import matplotlib.pyplot as plt   distribution = np.linspace ( 0 , np.minimum (rv. dist.b, 5 )) print ( "Distribution:" , distribution)   plot = plt.plot (distribution, rv.pdf (distribution)) `

` `

Output:

` Distribution: [0. 0.10204082 0.20408163 0.30612245 0.40816327 0.51020408 0.6122449 0.71428571 0.81632653 0.91836735 1.02040816 1.12244898 1.2244898 1.32653061 1.42857143 1.53061224 1.63265306 1.73469388 1.83673469 1.93877551 2.04081633 2.14285714 2.24489796 2.34693878 2.44897959 2.55102041 2.65306122 2.75510204 2.85714286 2.95918367 3.06122449 3.16326531 3.26530612 3.36734694 3.46938776 3.57142857 3.67346939 3.7755102 3.87755102 3.97959184 4.08163265 4.18367347 4.28571429 4.3877551 4.48979592 4.59183673 4.69387755 4.79591837 4.89795918 5. ] `

Code # 4: Various Positional Arguments

 ` import ` ` matplotlib. pyplot as plt ` ` import ` ` numpy as np `   ` x ` ` = ` ` np.linspace (` ` 0 ` `, ` ` 1.0 ` `, ` ` 100 ` `) `   ` # Various positional arguments ` ` y1 ` ` = ` ` burr.pdf (x, ` ` 2.75 ` `, ` ` 2.75 ` `) ` ` y2 ` ` = ` ` burr.pdf (x, ` ` 3.25 ` `, ` ` 3.25 ` `) ` ` plt.plot (x, y1, ` ` " * "` `, x, y2, ` `" r-- "` `) `

Output:

## Shop

Learn programming in R: courses

\$FREE

Best Python online courses for 2022

\$FREE

Best laptop for Fortnite

\$399+

Best laptop for Excel

\$

Best laptop for Solidworks

\$399+

Best laptop for Roblox

\$399+

Best computer for crypto mining

\$499+

Best laptop for Sims 4

\$

Latest questions

PythonStackOverflow

Common xlabel/ylabel for matplotlib subplots

PythonStackOverflow

Check if one list is a subset of another in Python

PythonStackOverflow

How to specify multiple return types using type-hints

PythonStackOverflow

Printing words vertically in Python

PythonStackOverflow

Python Extract words from a given string

PythonStackOverflow

Why do I get "Pickle - EOFError: Ran out of input" reading an empty file?

PythonStackOverflow

Python os.path.join () method

PythonStackOverflow

Flake8: Ignore specific warning for entire file

## Wiki

Python | How to copy data from one Excel sheet to another

Common xlabel/ylabel for matplotlib subplots

Check if one list is a subset of another in Python

How to specify multiple return types using type-hints

Printing words vertically in Python

Python Extract words from a given string

Cyclic redundancy check in Python

Finding mean, median, mode in Python without libraries