scipy stats.burr () | python

Parameters:
q: lower and upper tail probability
a, b: shape parameters
x: quantiles
loc: [optional] location parameter. Default = 0
scale: [optional] scale parameter. Default = 1
size: [tuple of ints, optional] shape or random variates.
moments: [optional] composed of letters [`mvsk `]; `m` = mean, `v` = variance, `s` = Fisher`s skew and `k` = Fisher`s kurtosis. (default = `mv`).

Results: burr continuous random variable

Code # 1: Generating a continuous random variable

# scipy import

from scipy.stats import burr

 

numargs = burr.numargs

[a, b] = [ 0.6 ,] * numargs

rv = burr (a, b)

  

print ( "RV:" , rv)

Output:

 RV: & lt; scipy.stats._distn_infrastructure.rv_frozen object at 0x0000029482FCC438 & gt; 

Code # 2: beta random variations and probability distribution function.

import numpy as np

quantile = np.arange ( 0.01 , 1 , 0.1 )

 
# Random Variants

R = burr.rvs (a, b, scale = 2 , size = 10 )

p rint ( "Random Variates:" , R)

 
# PDF

R = burr.pdf (quantile, a, b, loc = 0 , scale = 1 )

print ( "Probability Distribution:" , R)

Output:

 Random Variates: [1.51241629e-04 3.47964171e-01 2.94154949e-02 5.10430246e-02 1.82413279e-02 2.12564883e + 00 3.51099766e-05 2.32907895e + 01 6.24723647e-04 2.79124934e-01] Probability Distribution: [6.21994723 1.01375434 0.57575653 0.40021455 0.30462819 0.24439598 0.20298921 0.17281591 0.14988693 0.1319016] 

Code # 3: Graphic representation.

import numpy as np

import matplotlib.pyplot as plt

 

distribution = np.linspace ( 0 , np.minimum (rv. dist.b, 5 ))

print ( "Distribution:" , distribution)

 

plot = plt.plot (distribution, rv.pdf (distribution))

Output:

 Distribution: [0. 0.10204082 0.20408163 0.30612245 0.40816327 0.51020408 0.6122449 0.71428571 0.81632653 0.91836735 1.02040816 1.12244898 1.2244898 1.32653061 1.42857143 1.53061224 1.63265306 1.73469388 1.83673469 1.93877551 2.04081633 2.14285714 2.24489796 2.34693878 2.44897959 2.55102041 2.65306122 2.75510204 2.85714286 2.95918367 3.06122449 3.16326531 3.26530612 3.36734694 3.46938776 3.57142857 3.67346939 3.7755102 3.87755102 3.97959184 4.08163265 4.18367347 4.28571429 4.3877551 4.48979592 4.59183673 4.69387755 4.79591837 4.89795918 5. ] 

Code # 4: Various Positional Arguments

import matplotlib. pyplot as plt

import numpy as np

 

x = np.linspace ( 0 , 1.0 , 100 )

 
# Various positional arguments

y1 = burr.pdf (x, 2.75 , 2.75 )

y2 = burr.pdf (x, 3.25 , 3.25 )

plt.plot (x, y1, " * " , x, y2, " r-- " )

Output: