👻 Check our latest review to choose the best laptop for Machine Learning engineers and Deep learning tasks!
stats.binned_statistic_2d (arr1, arr2, values, statistic = & # 39; mean & # 39 ;, bins = 10, range = None)
calculates the statistic value for given two-dimensional data.
It works in a similar way to histogram2d. Since the histogram function makes bins and counts no. points in each basket; this function calculates the sum, average, mean -median-mode-in-python-without-libraries/">median, count, or other statistics of values ​​for each bin.
Parameters:
arr1: [array_like] input array to be binned along the first dimension.
arr2: [array_like] input array to be binned along the second dimension.
values: [array_like] on which stats to be calculated.
statistics: Statistics to compute { mean , count, mean -median-mode-in-python-without-libraries/">median, sum, function}. Default is mean .
bin: [int or scalars] If bins is an int, it defines the number of equal-width bins in the given range (10, by default). If bins is a sequence, it defines the bin edges.
range: (float, float) Lower and upper range of the bins and if not provided, range is from x.max () to x.min ().Results: Statistics value for each bin; bin edges along first and second dimension; bin number.
Code # 1:
|
Output:
x:
[0.31218238 0.86791445 0.42763346 0.79798587 0.91361299 0.09005856
0.54419846 0.18973948 0.67016378 0.8083121]y:
[0.35959238 0.69265819 0.18751529 0.98863414 0.97810927 0.24054104
0.76764562 0.60635485 0.61551806 0.63884672]1: 2 3 4 5 6 7 8 9]
binned_statistic_2d for count: BinnedStatistic2dResult (statistic = array ([[1., 0., 1., 0., 0.],
[0 ., 1., 0., 0., 0.],
[1., 0., 0., 1., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 1., 1., 2.]]), x_edge = array ([0.09005856, 0.25476945, 0.41948033, 0.58419122, 0.74890211,
0.91361299 ]), y_edg e = array ([0.18751529, 0.34773906, 0.50796283, 0.6681866, 0.82841037,
0.98863414]), binnumber = array ([16, 39, 22, 40, 40, 8, 25, 10, 31, 38], dtype = int64))
Code # 2:
# stats.binned_statistic_2d () method
import
numpy as np
from
scipy
import
stats
x
=
np.random.rand (
10
)
y
=
np.random.rand (
10
)
z
=
np.arange (
10
)
# greedy
print
(
"binned_statistic_2d for mean : "
,
stats.binned_statistic_2d ( x, y, values ​​
=
z,
statistic
=
’ mean ’
, bins
=
[
5
,
5
]))
Output:
binned_statistic_2d for mean : BinnedStatistic2dResult (statistic = array ([[5., nan, 7., nan, nan],
[nan, 0., nan, nan, nan],
[2., nan, nan, 6., nan],
[nan, nan, 8., nan, nan],
[nan, nan, 9., 1., 3.5]]), x_edge = array ([0.09005856, 0.25476945, 0.41948033, 0.58419122, 0.74890211,
0.91361299]), y_edge = array ([0.18751529, 0.34773906, 0.50796283, 0.6681866, 0.82841037,
0.98863414]), binnumber = array ([16, 39, 22, 40, 40, 8, 25, 10, 31, 38], dtype = int64))
👻 Read also: what is the best laptop for engineering students?
We hope this article has helped you to resolve the problem. Apart from sciPy stats.binned_statistic_2d () function | python, check other array Python module-related topics.
Want to excel in Python? See our review of the best Python online courses 2023. If you are interested in Data Science, check also how to learn programming in R.
By the way, this material is also available in other languages:
- Italiano sciPy stats.binned_statistic_2d () function | python
- Deutsch sciPy stats.binned_statistic_2d () function | python
- Français sciPy stats.binned_statistic_2d () function | python
- Español sciPy stats.binned_statistic_2d () function | python
- Türk sciPy stats.binned_statistic_2d () function | python
- Русский sciPy stats.binned_statistic_2d () function | python
- Português sciPy stats.binned_statistic_2d () function | python
- Polski sciPy stats.binned_statistic_2d () function | python
- Nederlandse sciPy stats.binned_statistic_2d () function | python
- 中文 sciPy stats.binned_statistic_2d () function | python
- 한국어 sciPy stats.binned_statistic_2d () function | python
- 日本語 sciPy stats.binned_statistic_2d () function | python
- हिन्दी sciPy stats.binned_statistic_2d () function | python
Warsaw | 2023-02-02
I was preparing for my coding interview, thanks for clarifying this - sciPy stats.binned_statistic_2d () function | python in Python is not the simplest one. Checked yesterday, it works!
Warsaw | 2023-02-02
Thanks for explaining! I was stuck with sciPy stats.binned_statistic_2d () function | python for some hours, finally got it done 🤗. Will get back tomorrow with feedback
London | 2023-02-02
imp Python module is always a bit confusing 😭 sciPy stats.binned_statistic_2d () function | python is not the only problem I encountered. Checked yesterday, it works!