Change language

Random forest regression in Python

|

Random Forest — it is an ensemble method capable of performing both regression and classification tasks using multiple decision trees and a technique called Bootstrap Aggregation, commonly known as batching . The basic idea is to combine multiple decision trees in determining the end result, rather than relying on separate decision trees. 
Fit:

  • Select at random K data points from the training set.
  • Build a decision tree associated with these K data points .
  • Select the number of trees you want to build and repeat steps 1 and 2.
  • For a new data point, have each of your Ntree trees predict the Y value for the data point , and assign the new data point the average of all predicted Y values.

Below is a step-by-step Python implementation. 
Step 1: Import the required libraries.

# Library import

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

Step 2: Import and print dataset

data = pd.read_csv ( ’Salaries.csv’ )

print (data)


Step 3: Select all rows and column 1 from dataset in x and all rows and column 2 as y

x = data.iloc [:, 1: 2] .values 
print (x)
y = data.iloc [:, 2] .values 



Step 4: Install the Random Forest regressor into the dataset

# Fitting random forest regression to dataset
# import regressor

from sklearn.ensemble import RandomForestRegressor

  

  # create regressor object

regressor = RandomForestRegressor (n_estimators = 100 , random_state = 0 )

 
# install a regressor with x and y data
regressor.fit (x, y) 


Step 5: predicting a new result

y_pred = regressor.predict ( 6.5 # check the output by changing the values ​​

Step 6: Rendering the result

# Visualize random forest regression results

 
# arange to create a range of values ​​
# from minimum x to maximum
# x value with 0.01 difference
# between two consecutive values ​​

X_grid = np .arange ( min (x), max (x), 0.01

 
# reshape to convert data to array len (X_grid) * 1,
# i.e. make a column from X_grid value

X_grid = X_grid.reshape (( len (X_grid), 1 ))

 
# Scatter plot for source data

plt.scatter (x, y, color = ’blue’

  
# predicted data plot
plt.plot (X_grid, regressor.predict (X_grid), 

color = ’ green’

plt.title ( ’Random Forest Regression’ )

plt.xlabel ( ’Position level’ )

plt.ylabel ( ’ Salary’ )

plt.show ()

Shop

Learn programming in R: courses

$

Best Python online courses for 2022

$

Best laptop for Fortnite

$

Best laptop for Excel

$

Best laptop for Solidworks

$

Best laptop for Roblox

$

Best computer for crypto mining

$

Best laptop for Sims 4

$

Latest questions

NUMPYNUMPY

Common xlabel/ylabel for matplotlib subplots

12 answers

NUMPYNUMPY

How to specify multiple return types using type-hints

12 answers

NUMPYNUMPY

Why do I get "Pickle - EOFError: Ran out of input" reading an empty file?

12 answers

NUMPYNUMPY

Flake8: Ignore specific warning for entire file

12 answers

NUMPYNUMPY

glob exclude pattern

12 answers

NUMPYNUMPY

How to avoid HTTP error 429 (Too Many Requests) python

12 answers

NUMPYNUMPY

Python CSV error: line contains NULL byte

12 answers

NUMPYNUMPY

csv.Error: iterator should return strings, not bytes

12 answers

News


Wiki

Python | How to copy data from one Excel sheet to another

Common xlabel/ylabel for matplotlib subplots

Check if one list is a subset of another in Python

sin

How to specify multiple return types using type-hints

exp

Printing words vertically in Python

exp

Python Extract words from a given string

Cyclic redundancy check in Python

Finding mean, median, mode in Python without libraries

cos

Python add suffix / add prefix to strings in a list

Why do I get "Pickle - EOFError: Ran out of input" reading an empty file?

Python - Move item to the end of the list

Python - Print list vertically