  # Python | Sympy.reduced_totient () method Using the sympy.reduced_totient () method we can find Carmichael`s shorthand totient function or lambda (n) in SymPy.  selected_totient (n) or smallest m & gt; 0 such that for all k relatively simple to n .

Syntax: reduced_totient (n)

Parameter:
n - It denotes an integer.

Returns: Returns the smallest integer m & gt; 0 such that k m % n is equal to 1 for all k relatively prime to n.

Example # 1:

 ` # import redu_totient () method from sympy ` ` from ` ` sympy.ntheory ` ` import ` ` reduced_totient `   ` n ` ` = ` ` 8 `   ` # Use the extended_totient () method ` ` reduced_totient_n ` ` = ` ` reduced_totient (n) `   ` print ` ` (` `" lambda ({}) = {} "` `. ` ` format ` ` (n, reduced_totient_n)) ` ` # 1 ^ 2 = 1 (mod 8), 3 ^ 2 = 9 = 1 (mod 8), ` ` # 5 ^ 2 = 25 = 1 (mod 8) and 7 ^ 2 = 49 = 1 (mod 8) `

Exit:

``` lambda (8) = 2    Example # 2:            ` # import redu_totient () method from sympy `   ` from ` ` sympy.ntheory ` ` import ` ` reduced_totient `  ` `   ` n ` ` = ` ` 30 `     ` # Use the extended_totient () method `   ` reduced_totient_n ` ` = ` ` reduced_totient (n) `     ` print ` ` (` ` "lambda ({}) = {}" ` `. ` ` format ` ` (n, reduced_totient_n)) `        Exit :  lambda (30) = 4

```