+

# Python sympy | Matrix.eigenvects () method

Using the sympy.Matrix () method. Eigenvects () you can find your own vectors matrices. The eigenvects () method returns a list of tuples of the form (eigenvalue: algebraic multiplicity, [eigenvects]) .

Syntax: Matrix (). eigenvects ()

Returns: Returns a list of tuples of the form (eigenvalue: algebraic multiplicity, [eigenvectors]).

Example # 1:

 ` # import sympy ` ` from ` ` sympy ` ` import ` ` * ` ` M ` ` = ` ` Matrix ([[` ` 3 ` `, ` ` - ` ` 2 ` `, ` ` 4 ` `, ` ` - ` ` 2 ` `], ` ` [` ` 5 ` `, ` ` 3 ` `, ` ` - ` ` 3 ` `, ` ` - ` ` 2 ` `], ` ` [` ` 5 ` ` , ` ` - ` ` 2 ` `, ` ` 2 ` `, ` ` - ` ` 2 ` `], ` ` [` ` 5 ` `, ` ` - ` ` 2 ` `, ` ` - ` ` 3 ` `, ` ` 3 ` `]]) ` ` `  ` print ` ` (` ` "Matrix: {}" ` `. ` ` format ` ` (M)) ` ` `  ` # Use the sympy.eigenvects () method ` ` M_eigenvects ` ` = ` ` M.eigenvects () `   ` print ` ` (` ` "Eigenvects of a matrix: {}" ` `. ` ` format ` ` (M_eigenvects)) `

Exit :

Matrix: Matrix ([[3, -2, 4, -2], [5, 3, -3, -2], [5, -2, 2, -2], [5, -2, -3, 3]])
Eigenvects of a matrix: [(-2, 1, [Matrix ([
[0],
[1],
[1],
[1]])]), (3, 1, [Matrix ([
[1],
[1],
[1],
[1]])]), (5, 2, [Matrix ([
[1],
[1]],
[ 1],
[0]]), Matrix ([
[0],
[-1],
[0],
[1]]) ])]

Example # 2:

 ` # import sympy ` ` from ` ` sympy ` ` import ` ` * ` ` M ` ` = ` ` Matrix ([[ 1 , - 3 , 3 ], [ 3 , - 5 , 3 ], [ 6 , - 6 , 4 ]]) `` print ( "Matrix : {} " . format (M))   # Use the sympy.eigenvects () method M_eigenvects = M.eigenvects ()    print ( "Eigenvects of a matrix: {}" . format (M_eigenvects)) `

Exit:

Matrix: Matrix ([[1, -3, 3], [3, -5, 3], [ 6, -6, 4]])
Eigenvects of a matrix: [(-2, 2, [Matrix ([
[1]],
[1]],
[ 0]]), Matrix ([
[-1],
[0],
[1]])]), (4, 1, [Matrix ([
[1/2],
[1/2],
[1]])])]