 # Python | PyTorch cosh () method

The ` torch.cosh () ` function provides support for the hyperbolic cosine function in PyTorch. Input in radians is expected. Input type — tensor, and if the input contains more than one element, the element-wise hyperbolic cosine is calculated.

Syntax : torch.cosh (x, out = None)

Parameters :
x : Input tensor
name (optional): Output tensor

Return type : A tensor with the same type as that of x.

Code # 1:

` `

``` # PyTorch library import import torch   # Constant tensor of size 6 a = torch.FloatTensor ([ 1.0 , - 0 .5 , 3.4 , - 2.1 , 0.0 , - 6.5 ]) print (a)    # Using the Kosh function and # saving the result to & # 39; b & # 39; b = torch.cosh (a ) print (b) ```

` `

Exit:

` 1.0000 -0.5000 3.4000 -2.1000 0.0000 -6.5000 [ torch.FloatTensor of size 6] 1.5431 1.1276 14.9987 4.1443 1.0000 332.5716 [torch.FloatTensor of si ze 6] `

Code # 2: Visualization

` `

``` # Import PyTorch library import torch    # Importing the NumPy library import numpy as np    # Import matplotlib.pylot import matplotlib.pyplot as plt   # Vector size 15 with values ​​from -1 to 1 a = np.linspace ( - 1 , 1 , 15 )   # Applying the hyperbolic cosine and # save the result to & # 39; b & # 39; b = torch.cosh (torch.FloatTensor (a))   print (b)   # Build plt. plot (a, b.numpy (), color = `red` , marker = "o" )  plt.title ( "torch.cosh" )  plt.xlabel ( "X" )  plt.ylabel ( "Y" )    plt.show () ```

Exit:

` 1.5431 1.3904 1.2661 1.1678 1.0933 1.0411 1.0102 1.0000 1.0102 1.0411 1.0933 1.1678 1.2661 1.3904 1.5431 [torch.FloatTensor of size 15] `