Python | Pandas Series.dt.is_quarter_end

NumPy | Python Methods and Functions

Series.dt can be used to access series values ​​as datetimelike and return multiple properties. Series.dt.is_quarter_end Pandas Series.dt.is_quarter_end returns a boolean value indicating whether the date is the last day quarter.

Syntax: Series.dt.is_quarter_end

Parameter: None

Returns: numpy array

Example # 1: Use the Series.dt.is_quarter_end attribute to check if whether the dates in the underlying data of this series object are the last day of the quarter.

# import pandas as pd

import pandas as pd

 
# Create series

sr = pd.Serie s ([ `2012-3-31` , ` 2019- 7-18 12: 30` , `2008-02-2 10: 30` ,

`2010-4-22 09:25` , `2019-12-31 00:00` ])

 
# Create index

idx = [ `Day 1` , `Day 2` , `Day 3` , ` Day 4` , `Day 5` ]

  
# set index

sr.index = idx

 
# Convert baseline data to date and time

sr = pd.to_datetime ( sr)

 
# Print series

print (sr)

Output:

We will now use the Series.dt.is_quarter_end attribute to check if the dates in a given series object are the last day of the quarter or not.

< code class = "comments"> # check if the dates are up to date
# day of the quarter

result = sr.dt.is_quarter_end

  
# print the result

print (result)

Exit:

As we can see in the output, the Series. dt.is_quarter_end successfully accessed and returned boolean values ​​indicating whether the dates are the last day of the quarter or not.

Example # 2: Use the Series attribute .dt.is_quarter_end to check if the dates in the underlying data of this series object are the last day of the quarter.

< p>

# import pandas as pd

import pandas as pd

 
# Create series

sr = pd.Series (pd.date_range ( `2012-1 -1 00: 00`

periods = 5 , freq = `Q` ))

  
# Create index

idx = [ ` Day 1` , `Day 2` , `Day 3` , ` Day 4` , `Day 5` ]

 
# set index

sr.index = idx

 
# Print series

print (sr)

Output:

We will now use the Series.dt.is_quarter_end attribute to check if the dates are in this object of the series last day quarters alright or not.

# check if the dates are up to date
# day of the quarter

result = sr.dt.is_quarter_end

 
# print result

print (result)

Output:

As we can see in the output, the Series.dt.is_quarter_end attribute successfully accessed and returned boolean values ​​indicating whether the dates are the last day of the quarter or not.





Get Solution for free from DataCamp guru