Python | Pandas Index.all ()

NumPy | Python Methods and Functions

Index.all() Pandas Index.all() checks if all items are in index true or not. Returns a single boolean value if no axis is specified. It returns true if every single value in the index is true. It returns false if any of the values ​​in the index are invalid.

Note: it treats 0 as false.

Syntax: Index.all (* args, ** kwargs)

Parameters:
* args: These parameters will be passed to numpy.all
** kwargs: These parameters will be passed to numpy.all

Returns: all: bool or array_like (if axis is specified)
A single element array_like may be converted to bool.

Example # 1: Use Index.all () to check if all values ​​in the index are true.

# import pandas as pd

import pandas as pd

 
# Create index

df = pd.Index ([ 10 , 44 , 5 , 25 , 74 ])

 
# Print index
df

Output:

Let`s check if all the values ​​in the index are correct or not.

# check if index values ​​are true or not

df. all ()

Output:

As we can see in the output, the function returned true, indicating that all values ​​in the index are correct.

Example # 2: Use Index.all () to check if all values ​​in the index are true. We have about 0 values ​​in the index.

# import pandas as pd

import pandas as pd

 
# Create index

df = pd.Index ([ 17 , 69 , 33 , 5 , 0 , 74 , 0 ])

 
# Print the data frame
df

Output:

Let`s check if all the values in the index are true or whether they also have false values.

# check if there is a lie
# the value present in the index

df. all ()

Exit:





Get Solution for free from DataCamp guru