The Pandas function dataframe.quantile()
returns values in the specified quantile along the requested axis, numpy.percentile.
Note. In each set of values, a variable that divides the frequency distribution into equal groups, each of which contains the same fraction of the total population.
Syntax: DataFrame.quantile ( q = 0.5, axis = 0, numeric_only = True, interpolation = ’linear’)
Parameters:
q: float or array -like, default 0.5 (50% quantile). 0 "= q "= 1, the quantile (s) to compute
axis: [{0, 1, ’index’, ’columns’} (default 0)] 0 or ’index’ for row-wise, 1 or ’columns’ for column-wise
numeric_only: If False, the quantile of datetime and timedelta data will be computed as well
interpolatoin: {’linear’, ’lower’, ’higher’, ’midpoint’, ’nearest’}Returns: quantiles: Series or DataFrame
-" If q is an array, a DataFrame will be returned where the index is q, the columns are the columns of self, and the values are the quantiles.
-" If q is a float, a Series will be returned where the index is the columns of self and the values are the quantiles.
Example # 1: Use the function quantile ()
to find the quantile value ".2"
|
Let’s use the dataframe.quantile ()
function to find the quantile & # 39; .2 & # 39; for each column in the data frame.
|
Output:
Example # 2: Use the quantile ()
function to find quantile ()
.1, .25, .5, .75) along the index axis .
|
Exit :