Change language

Python | Pandas DataFrame.astype ()

| | |

DataFrame.astype() is used to cast the pandas object to the specified dtype.  astype () also provides the ability to convert any suitable existing column to a categorical type.

DataFrame.astype() is very handy when we want to DataFrame.astype() a specific datatype of a column to a different datatype. Not only that, but we can also use Python dictionary input to change more than one column type at a time. The label of the key in the dictionary matches the column name, and the label of the values ​​in the dictionary matches the new datatypes we want the columns to be from.

Syntax: DataFrame.astype ( dtype, copy = True, errors = ’raise’, ** kwargs)

dtype: Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype,…}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame’s columns to column-specific types.
copy: Return a copy when copy = True (be very careful setting copy = False as changes to values ​​then may propagate to other pandas objects).

errors: Control raising of exceptions on invalid data for provided dtype.
raise: allow exceptions to be raised
ignore: suppress exceptions. On error return original object

kwargs: keyword arguments to pass on to the constructor

Returns: casted: type of caller

To link to the CSV file used in the code, click here

Example # 1: Convert the data type of the Weight column.

# import pandas as pd

import pandas as pd

# Create data frame from CSV file

df = pd.read_csv ( " nba.csv " )

# Print the first 10 lines
# data frame for rendering


df [: 10 ]

Since the data has some" nan "values, in order to avoid any error, we will discard all lines containing any nan values ​​.

# discard all lines that
# is & # 39; nan & # 39 ;.

df.dropna (inplace = True )

# let’s figure out the data type of the Weight column

before = type (df.Weight [ 0 ])

# We are now converting it to int64.

df.Weight = df.Weight.astype ( ’int64’ )

# let’s figure out the data type after casting

after = type (df.W eight [ 0 ])

# print value before

# output value after


# print the data frame and see
# how it looks after the change

Example # 2: change the data type of more than one column at a time

Change the Name column to categorical type and Age column to int64 type.

# import pandas as pd

import pandas as pd

# Create data frame from CSV file

df = pd.read_csv ( "nba.csv" )

# Delete lines with values ​​& # 39; nan & # 39;

df = df.dropna ()

# print the existing data type of each column ()


Now let’s change both column data types at the same time.

# Passed the dictionary into the astype () function

df = df.astype ({ "Name" : ’ category’ , "Age" : ’int64’ })

# Now print datatype
# of all columns after modification ()


# print data frame
# also after the change



Learn programming in R: courses


Best Python online courses for 2022


Best laptop for Fortnite


Best laptop for Excel


Best laptop for Solidworks


Best laptop for Roblox


Best computer for crypto mining


Best laptop for Sims 4


Latest questions


psycopg2: insert multiple rows with one query

12 answers


How to convert Nonetype to int or string?

12 answers


How to specify multiple return types using type-hints

12 answers


Javascript Error: IPython is not defined in JupyterLab

12 answers



Python OpenCV | cv2.putText () method

numpy.arctan2 () in Python

Python | os.path.realpath () method

Python OpenCV | () method

Python OpenCV cv2.cvtColor () method

Python - Move item to the end of the list

time.perf_counter () function in Python

Check if one list is a subset of another in Python

Python os.path.join () method