Change language

Python | Pandas dataframe.all ()

| |

DataFrame.all() checks if all elements are true, possibly along the axis. It returns True if all elements are in row or along the Dataframe axis is nonzero, not empty, or false.

Syntax: DataFrame.all (axis = 0, bool_only = None, skipna = True, level = None, ** kwargs)

Parameters:
axis: {0 or ’index’, 1 or ’columns’, None} , default 0
Indicate which axis or axes should be reduced.
0 / ’index’: reduce the index, return a Series whose index is the original column labels.
1 / ’columns’ : reduce the columns, return a Series whose index is the original index.
None: reduce all axes, return a scalar.

skipna: Exclude NA / null values ... If an entire row / column is NA, the result will be NA.
level: If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
bool_only: Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.
** kwargs: Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns: all: Series or DataFrame (if level specified)

Note. The value Nan will be treated as a non-empty value and therefore will be evaluated as True.

To link to the CSV file used in the code, click here

Example # 1: Suffix _col in each _col in _col .

# import pandas as pd

import pandas as pd

 
# Create frame data from the CSV file

df = pd .read_csv ( "nba.csv" )

 
# Print first 10 lines
# data frame for rendering

df [: 10 ]

# check the "Name" column

df.Name. all ()

Output:

Example # 2. Behavior evaluation by columns

dataframe.all () The default behavior checks if all column values ​​return True.

# Check all columns in the data frame

df. all ( )

Output:

Example # 3: checking for line-by-line elements

Specify axis = & # 39; columns & # 39; to check if all string values ​​return True. if all values ​​in any particular row evaluate to true, then the total row evaluates to true.

# import pandas as pd

import pandas as pd

 
# Create data frame from CSV file

df = pd.read_csv ( "nba.csv" )

 
# Check through a row

df. all (axis = ’columns’ )

Output:

all ( ) evaluates all values ​​across all rows in a data frame and outputs a boolean value for each row.

Example # 4: validating all values ​​in a data frame

Specify axis = None to make each value true in the data frame.

# import pandas as pd

import pandas as pd

 
# Create data frame from CSV file

df = pd.read_csv ( "nba.csv" )

 
# Check through a row

df. all (axis = None )

Output:

Shop

Learn programming in R: courses

$

Best Python online courses for 2022

$

Best laptop for Fortnite

$

Best laptop for Excel

$

Best laptop for Solidworks

$

Best laptop for Roblox

$

Best computer for crypto mining

$

Best laptop for Sims 4

$

Latest questions

NUMPYNUMPY

psycopg2: insert multiple rows with one query

12 answers

NUMPYNUMPY

How to convert Nonetype to int or string?

12 answers

NUMPYNUMPY

How to specify multiple return types using type-hints

12 answers

NUMPYNUMPY

Javascript Error: IPython is not defined in JupyterLab

12 answers

News


Wiki

Python OpenCV | cv2.putText () method

numpy.arctan2 () in Python

Python | os.path.realpath () method

Python OpenCV | cv2.circle () method

Python OpenCV cv2.cvtColor () method

Python - Move item to the end of the list

time.perf_counter () function in Python

Check if one list is a subset of another in Python

Python os.path.join () method