Change language

Python | Pandas dataframe.all ()

DataFrame.all() checks if all elements are true, possibly along the axis. It returns True if all elements are in row or along the Dataframe axis is nonzero, not empty, or false.

Syntax: DataFrame.all (axis = 0, bool_only = None, skipna = True, level = None, ** kwargs)

Parameters:
axis: {0 or ’index’, 1 or ’columns’, None} , default 0
Indicate which axis or axes should be reduced.
0 / ’index’: reduce the index, return a Series whose index is the original column labels.
1 / ’columns’ : reduce the columns, return a Series whose index is the original index.
None: reduce all axes, return a scalar.

skipna: Exclude NA / null values ... If an entire row / column is NA, the result will be NA.
level: If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
bool_only: Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.
** kwargs: Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns: all: Series or DataFrame (if level specified)

Note. The value Nan will be treated as a non-empty value and therefore will be evaluated as True.

To link to the CSV file used in the code, click here

Example # 1: Suffix _col in each _col in _col .

# import pandas as pd

import pandas as pd

 
# Create frame data from the CSV file

df = pd .read_csv ( "nba.csv" )

 
# Print first 10 lines
# data frame for rendering

df [: 10 ]

# check the "Name" column

df.Name. all ()

Output:

Example # 2. Behavior evaluation by columns

dataframe.all () The default behavior checks if all column values ​​return True.

# Check all columns in the data frame

df. all ( )

Output:

Example # 3: checking for line-by-line elements

Specify axis = & # 39; columns & # 39; to check if all string values ​​return True. if all values ​​in any particular row evaluate to true, then the total row evaluates to true.

# import pandas as pd

import pandas as pd

 
# Create data frame from CSV file

df = pd.read_csv ( "nba.csv" )

 
# Check through a row

df. all (axis = ’columns’ )

Output:

all ( ) evaluates all values ​​across all rows in a data frame and outputs a boolean value for each row.

Example # 4: validating all values ​​in a data frame

Specify axis = None to make each value true in the data frame.

# import pandas as pd

import pandas as pd

 
# Create data frame from CSV file

df = pd.read_csv ( "nba.csv" )

 
# Check through a row

df. all (axis = None )

Output:

Shop

Gifts for programmers

Learn programming in R: courses

$FREE
Gifts for programmers

Best Python online courses for 2022

$FREE
Gifts for programmers

Best laptop for Fortnite

$399+
Gifts for programmers

Best laptop for Excel

$
Gifts for programmers

Best laptop for Solidworks

$399+
Gifts for programmers

Best laptop for Roblox

$399+
Gifts for programmers

Best computer for crypto mining

$499+
Gifts for programmers

Best laptop for Sims 4

$

Latest questions

PythonStackOverflow

Common xlabel/ylabel for matplotlib subplots

1947 answers

PythonStackOverflow

Check if one list is a subset of another in Python

1173 answers

PythonStackOverflow

How to specify multiple return types using type-hints

1002 answers

PythonStackOverflow

Printing words vertically in Python

909 answers

PythonStackOverflow

Python Extract words from a given string

798 answers

PythonStackOverflow

Why do I get "Pickle - EOFError: Ran out of input" reading an empty file?

606 answers

PythonStackOverflow

Python os.path.join () method

384 answers

PythonStackOverflow

Flake8: Ignore specific warning for entire file

360 answers

News


Wiki

Python | How to copy data from one Excel sheet to another

Common xlabel/ylabel for matplotlib subplots

Check if one list is a subset of another in Python

How to specify multiple return types using type-hints

Printing words vertically in Python

Python Extract words from a given string

Cyclic redundancy check in Python

Finding mean, median, mode in Python without libraries

Python add suffix / add prefix to strings in a list

Why do I get "Pickle - EOFError: Ran out of input" reading an empty file?

Python - Move item to the end of the list

Python - Print list vertically