DataFrame.all()
checks if all elements are true, possibly along the axis. It returns True if all elements are in row or along the Dataframe axis is nonzero, not empty, or false.
Syntax: DataFrame.all (axis = 0, bool_only = None, skipna = True, level = None, ** kwargs)
Parameters:
axis: {0 or ’index’, 1 or ’columns’, None} , default 0
Indicate which axis or axes should be reduced.
0 / ’index’: reduce the index, return a Series whose index is the original column labels.
1 / ’columns’ : reduce the columns, return a Series whose index is the original index.
None: reduce all axes, return a scalar.skipna: Exclude NA / null values ... If an entire row / column is NA, the result will be NA.
level: If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
bool_only: Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.
** kwargs: Additional keywords have no effect but might be accepted for compatibility with NumPy.Returns: all: Series or DataFrame (if level specified)
Note. The value Nan will be treated as a non-empty value and therefore will be evaluated as True.
To link to the CSV file used in the code, click here
Example # 1: Suffix _col
in each _col
in _col
.
|
|
Output:
Example # 2. Behavior evaluation by columns
dataframe.all ()
The default behavior checks if all column values return True.
|
Output:
Example # 3: checking for line-by-line elements
Specify axis = & # 39; columns & # 39; to check if all string values return True. if all values in any particular row evaluate to true, then the total row evaluates to true.
|
Output:
all ( )
evaluates all values across all rows in a data frame and outputs a boolean value for each row.
Example # 4: validating all values in a data frame
Specify axis = None to make each value true in the data frame.
|
Output: