Python OpenCV cv2.rectangle () method

| | | | |

OpenCV-Python — is a Python bindings library for solving computer vision problems. cv2.rectangle () is used to draw a rectangle on any image.

Syntax: cv2.rectangle (image, start_point, end_point, color , thickness)

Parameters:
image: It is the image on which rectangle is to be drawn.
start_point: It is the starting coordinates of rectangle. The coordinates are represented as tuples of two values  ( X coordinate value, Y coordinate value).
end_point: It is the ending coordinates of rectangle. The coordinates are represented as tuples of two values ( X coordinate value, Y coordinate value).
color: It is the color of border line of rectangle to be drawn. For BGR , we pass a tuple. eg: (255, 0, 0) for blue color.
thickness: It is the thickness of the rectangle border line in px . Thickness of -1 px will fill the rectangle shape by the specified color.

Return Value: It returns an image.

Example # 1:

# Python program to explain cv2.rectangle() method

# importing cv2
import cv2

# path
path = r’C:UsersRajnishDesktopgeeksforgeeksgeeks.png’

# Reading an image in default mode
image = cv2.imread(path)

# Window name in which image is displayed
window_name = ’Image’

# Start coordinate, here (5, 5)
# represents the top left corner of rectangle
start_point = (5, 5)

# Ending coordinate, here (220, 220)
# represents the bottom right corner of rectangle
end_point = (220, 220)

# Blue color in BGR
color = (255, 0, 0)

# Line thickness of 2 px
thickness = 2

# Using cv2.rectangle() method
# Draw a rectangle with blue line borders of thickness of 2 px
image = cv2.rectangle(image, start_point, end_point, color, thickness)

# Displaying the image
cv2.imshow(window_name, image)

cv2.rectangle

Example # 2:

Using thickness -1 px to fill the rectangle with black.

# Python program to explain cv2.rectangle() method
	
# importing cv2
import cv2
	
# path
path = r’C:UsersRajnishDesktopgeeksforgeeksgeeks.png’
	
# Reading an image in grayscale mode
image = cv2.imread(path, 0)
	
# Window name in which image is displayed
window_name = ’Image’

# Start coordinate, here (100, 50)
# represents the top left corner of rectangle
start_point = (100, 50)

# Ending coordinate, here (125, 80)
# represents the bottom right corner of rectangle
end_point = (125, 80)

# Black color in BGR
color = (0, 0, 0)

# Line thickness of -1 px
# Thickness of -1 will fill the entire shape
thickness = -1

# Using cv2.rectangle() method
# Draw a rectangle of black color of thickness -1 px
image = cv2.rectangle(image, start_point, end_point, color, thickness)

# Displaying the image
cv2.imshow(window_name, image)


cv2 rectangle

opencv cv2.rectangle

he cv2.rectangle function is to draw a simple rectangle on the image. The cv2.rectangle function definition given on the opencv official site is as follows:

Python: cv2.rectangle(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) → None

  • img – Image.
  • pt1 – Vertex of the rectangle.
  • pt2 – Vertex of the rectangle opposite to pt1 .
  • color – Rectangle color or brightness (grayscale image).
  • thickness – Thickness of lines that make up the rectangle. Negative
    values, like CV_FILLED , mean that the function has to draw a filled
    rectangle.
  • lineType – Type of the line. See the line() description.
    — 8 (or omitted) - 8-connected line.
    — 4 - 4-connected line.
  • —CV_AA - antialiased line.
  • shift – Number of fractional bits in the point coordinates.**

Python OpenCV cv2.rectangle () method: StackOverflow Questions

How do I merge two dictionaries in a single expression (taking union of dictionaries)?

Question by Carl Meyer

I have two Python dictionaries, and I want to write a single expression that returns these two dictionaries, merged (i.e. taking the union). The update() method would be what I need, if it returned its result instead of modifying a dictionary in-place.

>>> x = {"a": 1, "b": 2}
>>> y = {"b": 10, "c": 11}
>>> z = x.update(y)
>>> print(z)
None
>>> x
{"a": 1, "b": 10, "c": 11}

How can I get that final merged dictionary in z, not x?

(To be extra-clear, the last-one-wins conflict-handling of dict.update() is what I"m looking for as well.)

Answer #1:

How can I merge two Python dictionaries in a single expression?

For dictionaries x and y, z becomes a shallowly-merged dictionary with values from y replacing those from x.

  • In Python 3.9.0 or greater (released 17 October 2020): PEP-584, discussed here, was implemented and provides the simplest method:

    z = x | y          # NOTE: 3.9+ ONLY
    
  • In Python 3.5 or greater:

    z = {**x, **y}
    
  • In Python 2, (or 3.4 or lower) write a function:

    def merge_two_dicts(x, y):
        z = x.copy()   # start with keys and values of x
        z.update(y)    # modifies z with keys and values of y
        return z
    

    and now:

    z = merge_two_dicts(x, y)
    

Explanation

Say you have two dictionaries and you want to merge them into a new dictionary without altering the original dictionaries:

x = {"a": 1, "b": 2}
y = {"b": 3, "c": 4}

The desired result is to get a new dictionary (z) with the values merged, and the second dictionary"s values overwriting those from the first.

>>> z
{"a": 1, "b": 3, "c": 4}

A new syntax for this, proposed in PEP 448 and available as of Python 3.5, is

z = {**x, **y}

And it is indeed a single expression.

Note that we can merge in with literal notation as well:

z = {**x, "foo": 1, "bar": 2, **y}

and now:

>>> z
{"a": 1, "b": 3, "foo": 1, "bar": 2, "c": 4}

It is now showing as implemented in the release schedule for 3.5, PEP 478, and it has now made its way into the What"s New in Python 3.5 document.

However, since many organizations are still on Python 2, you may wish to do this in a backward-compatible way. The classically Pythonic way, available in Python 2 and Python 3.0-3.4, is to do this as a two-step process:

z = x.copy()
z.update(y) # which returns None since it mutates z

In both approaches, y will come second and its values will replace x"s values, thus b will point to 3 in our final result.

Not yet on Python 3.5, but want a single expression

If you are not yet on Python 3.5 or need to write backward-compatible code, and you want this in a single expression, the most performant while the correct approach is to put it in a function:

def merge_two_dicts(x, y):
    """Given two dictionaries, merge them into a new dict as a shallow copy."""
    z = x.copy()
    z.update(y)
    return z

and then you have a single expression:

z = merge_two_dicts(x, y)

You can also make a function to merge an arbitrary number of dictionaries, from zero to a very large number:

def merge_dicts(*dict_args):
    """
    Given any number of dictionaries, shallow copy and merge into a new dict,
    precedence goes to key-value pairs in latter dictionaries.
    """
    result = {}
    for dictionary in dict_args:
        result.update(dictionary)
    return result

This function will work in Python 2 and 3 for all dictionaries. e.g. given dictionaries a to g:

z = merge_dicts(a, b, c, d, e, f, g) 

and key-value pairs in g will take precedence over dictionaries a to f, and so on.

Critiques of Other Answers

Don"t use what you see in the formerly accepted answer:

z = dict(x.items() + y.items())

In Python 2, you create two lists in memory for each dict, create a third list in memory with length equal to the length of the first two put together, and then discard all three lists to create the dict. In Python 3, this will fail because you"re adding two dict_items objects together, not two lists -

>>> c = dict(a.items() + b.items())
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: "dict_items" and "dict_items"

and you would have to explicitly create them as lists, e.g. z = dict(list(x.items()) + list(y.items())). This is a waste of resources and computation power.

Similarly, taking the union of items() in Python 3 (viewitems() in Python 2.7) will also fail when values are unhashable objects (like lists, for example). Even if your values are hashable, since sets are semantically unordered, the behavior is undefined in regards to precedence. So don"t do this:

>>> c = dict(a.items() | b.items())

This example demonstrates what happens when values are unhashable:

>>> x = {"a": []}
>>> y = {"b": []}
>>> dict(x.items() | y.items())
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unhashable type: "list"

Here"s an example where y should have precedence, but instead the value from x is retained due to the arbitrary order of sets:

>>> x = {"a": 2}
>>> y = {"a": 1}
>>> dict(x.items() | y.items())
{"a": 2}

Another hack you should not use:

z = dict(x, **y)

This uses the dict constructor and is very fast and memory-efficient (even slightly more so than our two-step process) but unless you know precisely what is happening here (that is, the second dict is being passed as keyword arguments to the dict constructor), it"s difficult to read, it"s not the intended usage, and so it is not Pythonic.

Here"s an example of the usage being remediated in django.

Dictionaries are intended to take hashable keys (e.g. frozensets or tuples), but this method fails in Python 3 when keys are not strings.

>>> c = dict(a, **b)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: keyword arguments must be strings

From the mailing list, Guido van Rossum, the creator of the language, wrote:

I am fine with declaring dict({}, **{1:3}) illegal, since after all it is abuse of the ** mechanism.

and

Apparently dict(x, **y) is going around as "cool hack" for "call x.update(y) and return x". Personally, I find it more despicable than cool.

It is my understanding (as well as the understanding of the creator of the language) that the intended usage for dict(**y) is for creating dictionaries for readability purposes, e.g.:

dict(a=1, b=10, c=11)

instead of

{"a": 1, "b": 10, "c": 11}

Response to comments

Despite what Guido says, dict(x, **y) is in line with the dict specification, which btw. works for both Python 2 and 3. The fact that this only works for string keys is a direct consequence of how keyword parameters work and not a short-coming of dict. Nor is using the ** operator in this place an abuse of the mechanism, in fact, ** was designed precisely to pass dictionaries as keywords.

Again, it doesn"t work for 3 when keys are not strings. The implicit calling contract is that namespaces take ordinary dictionaries, while users must only pass keyword arguments that are strings. All other callables enforced it. dict broke this consistency in Python 2:

>>> foo(**{("a", "b"): None})
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: foo() keywords must be strings
>>> dict(**{("a", "b"): None})
{("a", "b"): None}

This inconsistency was bad given other implementations of Python (PyPy, Jython, IronPython). Thus it was fixed in Python 3, as this usage could be a breaking change.

I submit to you that it is malicious incompetence to intentionally write code that only works in one version of a language or that only works given certain arbitrary constraints.

More comments:

dict(x.items() + y.items()) is still the most readable solution for Python 2. Readability counts.

My response: merge_two_dicts(x, y) actually seems much clearer to me, if we"re actually concerned about readability. And it is not forward compatible, as Python 2 is increasingly deprecated.

{**x, **y} does not seem to handle nested dictionaries. the contents of nested keys are simply overwritten, not merged [...] I ended up being burnt by these answers that do not merge recursively and I was surprised no one mentioned it. In my interpretation of the word "merging" these answers describe "updating one dict with another", and not merging.

Yes. I must refer you back to the question, which is asking for a shallow merge of two dictionaries, with the first"s values being overwritten by the second"s - in a single expression.

Assuming two dictionaries of dictionaries, one might recursively merge them in a single function, but you should be careful not to modify the dictionaries from either source, and the surest way to avoid that is to make a copy when assigning values. As keys must be hashable and are usually therefore immutable, it is pointless to copy them:

from copy import deepcopy

def dict_of_dicts_merge(x, y):
    z = {}
    overlapping_keys = x.keys() & y.keys()
    for key in overlapping_keys:
        z[key] = dict_of_dicts_merge(x[key], y[key])
    for key in x.keys() - overlapping_keys:
        z[key] = deepcopy(x[key])
    for key in y.keys() - overlapping_keys:
        z[key] = deepcopy(y[key])
    return z

Usage:

>>> x = {"a":{1:{}}, "b": {2:{}}}
>>> y = {"b":{10:{}}, "c": {11:{}}}
>>> dict_of_dicts_merge(x, y)
{"b": {2: {}, 10: {}}, "a": {1: {}}, "c": {11: {}}}

Coming up with contingencies for other value types is far beyond the scope of this question, so I will point you at my answer to the canonical question on a "Dictionaries of dictionaries merge".

Less Performant But Correct Ad-hocs

These approaches are less performant, but they will provide correct behavior. They will be much less performant than copy and update or the new unpacking because they iterate through each key-value pair at a higher level of abstraction, but they do respect the order of precedence (latter dictionaries have precedence)

You can also chain the dictionaries manually inside a dict comprehension:

{k: v for d in dicts for k, v in d.items()} # iteritems in Python 2.7

or in Python 2.6 (and perhaps as early as 2.4 when generator expressions were introduced):

dict((k, v) for d in dicts for k, v in d.items()) # iteritems in Python 2

itertools.chain will chain the iterators over the key-value pairs in the correct order:

from itertools import chain
z = dict(chain(x.items(), y.items())) # iteritems in Python 2

Performance Analysis

I"m only going to do the performance analysis of the usages known to behave correctly. (Self-contained so you can copy and paste yourself.)

from timeit import repeat
from itertools import chain

x = dict.fromkeys("abcdefg")
y = dict.fromkeys("efghijk")

def merge_two_dicts(x, y):
    z = x.copy()
    z.update(y)
    return z

min(repeat(lambda: {**x, **y}))
min(repeat(lambda: merge_two_dicts(x, y)))
min(repeat(lambda: {k: v for d in (x, y) for k, v in d.items()}))
min(repeat(lambda: dict(chain(x.items(), y.items()))))
min(repeat(lambda: dict(item for d in (x, y) for item in d.items())))

In Python 3.8.1, NixOS:

>>> min(repeat(lambda: {**x, **y}))
1.0804965235292912
>>> min(repeat(lambda: merge_two_dicts(x, y)))
1.636518670246005
>>> min(repeat(lambda: {k: v for d in (x, y) for k, v in d.items()}))
3.1779992282390594
>>> min(repeat(lambda: dict(chain(x.items(), y.items()))))
2.740647904574871
>>> min(repeat(lambda: dict(item for d in (x, y) for item in d.items())))
4.266070580109954
$ uname -a
Linux nixos 4.19.113 #1-NixOS SMP Wed Mar 25 07:06:15 UTC 2020 x86_64 GNU/Linux

Resources on Dictionaries

Answer #2:

In your case, what you can do is:

z = dict(list(x.items()) + list(y.items()))

This will, as you want it, put the final dict in z, and make the value for key b be properly overridden by the second (y) dict"s value:

>>> x = {"a":1, "b": 2}
>>> y = {"b":10, "c": 11}
>>> z = dict(list(x.items()) + list(y.items()))
>>> z
{"a": 1, "c": 11, "b": 10}

If you use Python 2, you can even remove the list() calls. To create z:

>>> z = dict(x.items() + y.items())
>>> z
{"a": 1, "c": 11, "b": 10}

If you use Python version 3.9.0a4 or greater, then you can directly use:

x = {"a":1, "b": 2}
y = {"b":10, "c": 11}
z = x | y
print(z)
{"a": 1, "c": 11, "b": 10}

Answer #3:

An alternative:

z = x.copy()
z.update(y)

Answer #4:

Another, more concise, option:

z = dict(x, **y)

Note: this has become a popular answer, but it is important to point out that if y has any non-string keys, the fact that this works at all is an abuse of a CPython implementation detail, and it does not work in Python 3, or in PyPy, IronPython, or Jython. Also, Guido is not a fan. So I can"t recommend this technique for forward-compatible or cross-implementation portable code, which really means it should be avoided entirely.

Answer #5:

This probably won"t be a popular answer, but you almost certainly do not want to do this. If you want a copy that"s a merge, then use copy (or deepcopy, depending on what you want) and then update. The two lines of code are much more readable - more Pythonic - than the single line creation with .items() + .items(). Explicit is better than implicit.

In addition, when you use .items() (pre Python 3.0), you"re creating a new list that contains the items from the dict. If your dictionaries are large, then that is quite a lot of overhead (two large lists that will be thrown away as soon as the merged dict is created). update() can work more efficiently, because it can run through the second dict item-by-item.

In terms of time:

>>> timeit.Timer("dict(x, **y)", "x = dict(zip(range(1000), range(1000)))
y=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
15.52571702003479
>>> timeit.Timer("temp = x.copy()
temp.update(y)", "x = dict(zip(range(1000), range(1000)))
y=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
15.694622993469238
>>> timeit.Timer("dict(x.items() + y.items())", "x = dict(zip(range(1000), range(1000)))
y=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
41.484580039978027

IMO the tiny slowdown between the first two is worth it for the readability. In addition, keyword arguments for dictionary creation was only added in Python 2.3, whereas copy() and update() will work in older versions.

Python OpenCV cv2.rectangle () method: StackOverflow Questions

Meaning of @classmethod and @staticmethod for beginner?

Question by user1632861

Could someone explain to me the meaning of @classmethod and @staticmethod in python? I need to know the difference and the meaning.

As far as I understand, @classmethod tells a class that it"s a method which should be inherited into subclasses, or... something. However, what"s the point of that? Why not just define the class method without adding @classmethod or @staticmethod or any @ definitions?

tl;dr: when should I use them, why should I use them, and how should I use them?

Answer #1:

Though classmethod and staticmethod are quite similar, there"s a slight difference in usage for both entities: classmethod must have a reference to a class object as the first parameter, whereas staticmethod can have no parameters at all.

Example

class Date(object):

    def __init__(self, day=0, month=0, year=0):
        self.day = day
        self.month = month
        self.year = year

    @classmethod
    def from_string(cls, date_as_string):
        day, month, year = map(int, date_as_string.split("-"))
        date1 = cls(day, month, year)
        return date1

    @staticmethod
    def is_date_valid(date_as_string):
        day, month, year = map(int, date_as_string.split("-"))
        return day <= 31 and month <= 12 and year <= 3999

date2 = Date.from_string("11-09-2012")
is_date = Date.is_date_valid("11-09-2012")

Explanation

Let"s assume an example of a class, dealing with date information (this will be our boilerplate):

class Date(object):

    def __init__(self, day=0, month=0, year=0):
        self.day = day
        self.month = month
        self.year = year

This class obviously could be used to store information about certain dates (without timezone information; let"s assume all dates are presented in UTC).

Here we have __init__, a typical initializer of Python class instances, which receives arguments as a typical instancemethod, having the first non-optional argument (self) that holds a reference to a newly created instance.

Class Method

We have some tasks that can be nicely done using classmethods.

Let"s assume that we want to create a lot of Date class instances having date information coming from an outer source encoded as a string with format "dd-mm-yyyy". Suppose we have to do this in different places in the source code of our project.

So what we must do here is:

  1. Parse a string to receive day, month and year as three integer variables or a 3-item tuple consisting of that variable.
  2. Instantiate Date by passing those values to the initialization call.

This will look like:

day, month, year = map(int, string_date.split("-"))
date1 = Date(day, month, year)

For this purpose, C++ can implement such a feature with overloading, but Python lacks this overloading. Instead, we can use classmethod. Let"s create another "constructor".

    @classmethod
    def from_string(cls, date_as_string):
        day, month, year = map(int, date_as_string.split("-"))
        date1 = cls(day, month, year)
        return date1

date2 = Date.from_string("11-09-2012")

Let"s look more carefully at the above implementation, and review what advantages we have here:

  1. We"ve implemented date string parsing in one place and it"s reusable now.
  2. Encapsulation works fine here (if you think that you could implement string parsing as a single function elsewhere, this solution fits the OOP paradigm far better).
  3. cls is an object that holds the class itself, not an instance of the class. It"s pretty cool because if we inherit our Date class, all children will have from_string defined also.

Static method

What about staticmethod? It"s pretty similar to classmethod but doesn"t take any obligatory parameters (like a class method or instance method does).

Let"s look at the next use case.

We have a date string that we want to validate somehow. This task is also logically bound to the Date class we"ve used so far, but doesn"t require instantiation of it.

Here is where staticmethod can be useful. Let"s look at the next piece of code:

    @staticmethod
    def is_date_valid(date_as_string):
        day, month, year = map(int, date_as_string.split("-"))
        return day <= 31 and month <= 12 and year <= 3999

    # usage:
    is_date = Date.is_date_valid("11-09-2012")

So, as we can see from usage of staticmethod, we don"t have any access to what the class is---it"s basically just a function, called syntactically like a method, but without access to the object and its internals (fields and another methods), while classmethod does.

Answer #2:

Rostyslav Dzinko"s answer is very appropriate. I thought I could highlight one other reason you should choose @classmethod over @staticmethod when you are creating an additional constructor.

In the example above, Rostyslav used the @classmethod from_string as a Factory to create Date objects from otherwise unacceptable parameters. The same can be done with @staticmethod as is shown in the code below:

class Date:
  def __init__(self, month, day, year):
    self.month = month
    self.day   = day
    self.year  = year


  def display(self):
    return "{0}-{1}-{2}".format(self.month, self.day, self.year)


  @staticmethod
  def millenium(month, day):
    return Date(month, day, 2000)

new_year = Date(1, 1, 2013)               # Creates a new Date object
millenium_new_year = Date.millenium(1, 1) # also creates a Date object. 

# Proof:
new_year.display()           # "1-1-2013"
millenium_new_year.display() # "1-1-2000"

isinstance(new_year, Date) # True
isinstance(millenium_new_year, Date) # True

Thus both new_year and millenium_new_year are instances of the Date class.

But, if you observe closely, the Factory process is hard-coded to create Date objects no matter what. What this means is that even if the Date class is subclassed, the subclasses will still create plain Date objects (without any properties of the subclass). See that in the example below:

class DateTime(Date):
  def display(self):
      return "{0}-{1}-{2} - 00:00:00PM".format(self.month, self.day, self.year)


datetime1 = DateTime(10, 10, 1990)
datetime2 = DateTime.millenium(10, 10)

isinstance(datetime1, DateTime) # True
isinstance(datetime2, DateTime) # False

datetime1.display() # returns "10-10-1990 - 00:00:00PM"
datetime2.display() # returns "10-10-2000" because it"s not a DateTime object but a Date object. Check the implementation of the millenium method on the Date class for more details.

datetime2 is not an instance of DateTime? WTF? Well, that"s because of the @staticmethod decorator used.

In most cases, this is undesired. If what you want is a Factory method that is aware of the class that called it, then @classmethod is what you need.

Rewriting Date.millenium as (that"s the only part of the above code that changes):

@classmethod
def millenium(cls, month, day):
    return cls(month, day, 2000)

ensures that the class is not hard-coded but rather learnt. cls can be any subclass. The resulting object will rightly be an instance of cls.
Let"s test that out:

datetime1 = DateTime(10, 10, 1990)
datetime2 = DateTime.millenium(10, 10)

isinstance(datetime1, DateTime) # True
isinstance(datetime2, DateTime) # True


datetime1.display() # "10-10-1990 - 00:00:00PM"
datetime2.display() # "10-10-2000 - 00:00:00PM"

The reason is, as you know by now, that @classmethod was used instead of @staticmethod

Answer #3:

@classmethod means: when this method is called, we pass the class as the first argument instead of the instance of that class (as we normally do with methods). This means you can use the class and its properties inside that method rather than a particular instance.

@staticmethod means: when this method is called, we don"t pass an instance of the class to it (as we normally do with methods). This means you can put a function inside a class but you can"t access the instance of that class (this is useful when your method does not use the instance).

What is the meaning of single and double underscore before an object name?

Can someone please explain the exact meaning of having single and double leading underscores before an object"s name in Python, and the difference between both?

Also, does that meaning stay the same regardless of whether the object in question is a variable, a function, a method, etc.?

Answer #1:

Single Underscore

Names, in a class, with a leading underscore are simply to indicate to other programmers that the attribute or method is intended to be private. However, nothing special is done with the name itself.

To quote PEP-8:

_single_leading_underscore: weak "internal use" indicator. E.g. from M import * does not import objects whose name starts with an underscore.

Double Underscore (Name Mangling)

From the Python docs:

Any identifier of the form __spam (at least two leading underscores, at most one trailing underscore) is textually replaced with _classname__spam, where classname is the current class name with leading underscore(s) stripped. This mangling is done without regard to the syntactic position of the identifier, so it can be used to define class-private instance and class variables, methods, variables stored in globals, and even variables stored in instances. private to this class on instances of other classes.

And a warning from the same page:

Name mangling is intended to give classes an easy way to define “private” instance variables and methods, without having to worry about instance variables defined by derived classes, or mucking with instance variables by code outside the class. Note that the mangling rules are designed mostly to avoid accidents; it still is possible for a determined soul to access or modify a variable that is considered private.

Example

>>> class MyClass():
...     def __init__(self):
...             self.__superprivate = "Hello"
...             self._semiprivate = ", world!"
...
>>> mc = MyClass()
>>> print mc.__superprivate
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: myClass instance has no attribute "__superprivate"
>>> print mc._semiprivate
, world!
>>> print mc.__dict__
{"_MyClass__superprivate": "Hello", "_semiprivate": ", world!"}

Answer #2:

__foo__: this is just a convention, a way for the Python system to use names that won"t conflict with user names.

_foo: this is just a convention, a way for the programmer to indicate that the variable is private (whatever that means in Python).

__foo: this has real meaning: the interpreter replaces this name with _classname__foo as a way to ensure that the name will not overlap with a similar name in another class.

No other form of underscores have meaning in the Python world.

There"s no difference between class, variable, global, etc in these conventions.

Python OpenCV cv2.rectangle () method: StackOverflow Questions

How can I open multiple files using "with open" in Python?

I want to change a couple of files at one time, iff I can write to all of them. I"m wondering if I somehow can combine the multiple open calls with the with statement:

try:
  with open("a", "w") as a and open("b", "w") as b:
    do_something()
except IOError as e:
  print "Operation failed: %s" % e.strerror

If that"s not possible, what would an elegant solution to this problem look like?

Answer #1:

As of Python 2.7 (or 3.1 respectively) you can write

with open("a", "w") as a, open("b", "w") as b:
    do_something()

In earlier versions of Python, you can sometimes use contextlib.nested() to nest context managers. This won"t work as expected for opening multiples files, though -- see the linked documentation for details.


In the rare case that you want to open a variable number of files all at the same time, you can use contextlib.ExitStack, starting from Python version 3.3:

with ExitStack() as stack:
    files = [stack.enter_context(open(fname)) for fname in filenames]
    # Do something with "files"

Most of the time you have a variable set of files, you likely want to open them one after the other, though.

Answer #2:

For opening many files at once or for long file paths, it may be useful to break things up over multiple lines. From the Python Style Guide as suggested by @Sven Marnach in comments to another answer:

with open("/path/to/InFile.ext", "r") as file_1, 
     open("/path/to/OutFile.ext", "w") as file_2:
    file_2.write(file_1.read())

open() in Python does not create a file if it doesn"t exist

What is the best way to open a file as read/write if it exists, or if it does not, then create it and open it as read/write? From what I read, file = open("myfile.dat", "rw") should do this, right?

It is not working for me (Python 2.6.2) and I"m wondering if it is a version problem, or not supposed to work like that or what.

The bottom line is, I just need a solution for the problem. I am curious about the other stuff, but all I need is a nice way to do the opening part.

The enclosing directory was writeable by user and group, not other (I"m on a Linux system... so permissions 775 in other words), and the exact error was:

IOError: no such file or directory.

Answer #1:

You should use open with the w+ mode:

file = open("myfile.dat", "w+")

Answer #2:

The advantage of the following approach is that the file is properly closed at the block"s end, even if an exception is raised on the way. It"s equivalent to try-finally, but much shorter.

with open("file.dat";"a+") as f:
    f.write(...)
    ...

a+ Opens a file for both appending and reading. The file pointer is at the end of the file if the file exists. The file opens in the append mode. If the file does not exist, it creates a new file for reading and writing. -Python file modes

seek() method sets the file"s current position.

f.seek(pos [, (0|1|2)])
pos .. position of the r/w pointer
[] .. optionally
() .. one of ->
  0 .. absolute position
  1 .. relative position to current
  2 .. relative position from end

Only "rwab+" characters are allowed; there must be exactly one of "rwa" - see Stack Overflow question Python file modes detail.

Difference between modes a, a+, w, w+, and r+ in built-in open function?

In the python built-in open function, what is the exact difference between the modes w, a, w+, a+, and r+?

In particular, the documentation implies that all of these will allow writing to the file, and says that it opens the files for "appending", "writing", and "updating" specifically, but does not define what these terms mean.

Answer #1:

The opening modes are exactly the same as those for the C standard library function fopen().

The BSD fopen manpage defines them as follows:

 The argument mode points to a string beginning with one of the following
 sequences (Additional characters may follow these sequences.):

 ``r""   Open text file for reading.  The stream is positioned at the
         beginning of the file.

 ``r+""  Open for reading and writing.  The stream is positioned at the
         beginning of the file.

 ``w""   Truncate file to zero length or create text file for writing.
         The stream is positioned at the beginning of the file.

 ``w+""  Open for reading and writing.  The file is created if it does not
         exist, otherwise it is truncated.  The stream is positioned at
         the beginning of the file.

 ``a""   Open for writing.  The file is created if it does not exist.  The
         stream is positioned at the end of the file.  Subsequent writes
         to the file will always end up at the then current end of file,
         irrespective of any intervening fseek(3) or similar.

 ``a+""  Open for reading and writing.  The file is created if it does not
         exist.  The stream is positioned at the end of the file.  Subse-
         quent writes to the file will always end up at the then current
         end of file, irrespective of any intervening fseek(3) or similar.

Python OpenCV cv2.rectangle () method: StackOverflow Questions

matplotlib: how to draw a rectangle on image

How to draw a rectangle on an image, like this: enter image description here

import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
im = np.array(Image.open("dog.png"), dtype=np.uint8)
plt.imshow(im)

I don"t know how to proceed.

Answer #1:

You can add a Rectangle patch to the matplotlib Axes.

For example (using the image from the tutorial here):

import matplotlib.pyplot as plt
import matplotlib.patches as patches
from PIL import Image

im = Image.open("stinkbug.png")

# Create figure and axes
fig, ax = plt.subplots()

# Display the image
ax.imshow(im)

# Create a Rectangle patch
rect = patches.Rectangle((50, 100), 40, 30, linewidth=1, edgecolor="r", facecolor="none")

# Add the patch to the Axes
ax.add_patch(rect)

plt.show()

enter image description here

Python OpenCV cv2.rectangle () method: StackOverflow Questions

How do I merge two dictionaries in a single expression (taking union of dictionaries)?

Question by Carl Meyer

I have two Python dictionaries, and I want to write a single expression that returns these two dictionaries, merged (i.e. taking the union). The update() method would be what I need, if it returned its result instead of modifying a dictionary in-place.

>>> x = {"a": 1, "b": 2}
>>> y = {"b": 10, "c": 11}
>>> z = x.update(y)
>>> print(z)
None
>>> x
{"a": 1, "b": 10, "c": 11}

How can I get that final merged dictionary in z, not x?

(To be extra-clear, the last-one-wins conflict-handling of dict.update() is what I"m looking for as well.)

Answer #1:

How can I merge two Python dictionaries in a single expression?

For dictionaries x and y, z becomes a shallowly-merged dictionary with values from y replacing those from x.

  • In Python 3.9.0 or greater (released 17 October 2020): PEP-584, discussed here, was implemented and provides the simplest method:

    z = x | y          # NOTE: 3.9+ ONLY
    
  • In Python 3.5 or greater:

    z = {**x, **y}
    
  • In Python 2, (or 3.4 or lower) write a function:

    def merge_two_dicts(x, y):
        z = x.copy()   # start with keys and values of x
        z.update(y)    # modifies z with keys and values of y
        return z
    

    and now:

    z = merge_two_dicts(x, y)
    

Explanation

Say you have two dictionaries and you want to merge them into a new dictionary without altering the original dictionaries:

x = {"a": 1, "b": 2}
y = {"b": 3, "c": 4}

The desired result is to get a new dictionary (z) with the values merged, and the second dictionary"s values overwriting those from the first.

>>> z
{"a": 1, "b": 3, "c": 4}

A new syntax for this, proposed in PEP 448 and available as of Python 3.5, is

z = {**x, **y}

And it is indeed a single expression.

Note that we can merge in with literal notation as well:

z = {**x, "foo": 1, "bar": 2, **y}

and now:

>>> z
{"a": 1, "b": 3, "foo": 1, "bar": 2, "c": 4}

It is now showing as implemented in the release schedule for 3.5, PEP 478, and it has now made its way into the What"s New in Python 3.5 document.

However, since many organizations are still on Python 2, you may wish to do this in a backward-compatible way. The classically Pythonic way, available in Python 2 and Python 3.0-3.4, is to do this as a two-step process:

z = x.copy()
z.update(y) # which returns None since it mutates z

In both approaches, y will come second and its values will replace x"s values, thus b will point to 3 in our final result.

Not yet on Python 3.5, but want a single expression

If you are not yet on Python 3.5 or need to write backward-compatible code, and you want this in a single expression, the most performant while the correct approach is to put it in a function:

def merge_two_dicts(x, y):
    """Given two dictionaries, merge them into a new dict as a shallow copy."""
    z = x.copy()
    z.update(y)
    return z

and then you have a single expression:

z = merge_two_dicts(x, y)

You can also make a function to merge an arbitrary number of dictionaries, from zero to a very large number:

def merge_dicts(*dict_args):
    """
    Given any number of dictionaries, shallow copy and merge into a new dict,
    precedence goes to key-value pairs in latter dictionaries.
    """
    result = {}
    for dictionary in dict_args:
        result.update(dictionary)
    return result

This function will work in Python 2 and 3 for all dictionaries. e.g. given dictionaries a to g:

z = merge_dicts(a, b, c, d, e, f, g) 

and key-value pairs in g will take precedence over dictionaries a to f, and so on.

Critiques of Other Answers

Don"t use what you see in the formerly accepted answer:

z = dict(x.items() + y.items())

In Python 2, you create two lists in memory for each dict, create a third list in memory with length equal to the length of the first two put together, and then discard all three lists to create the dict. In Python 3, this will fail because you"re adding two dict_items objects together, not two lists -

>>> c = dict(a.items() + b.items())
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: "dict_items" and "dict_items"

and you would have to explicitly create them as lists, e.g. z = dict(list(x.items()) + list(y.items())). This is a waste of resources and computation power.

Similarly, taking the union of items() in Python 3 (viewitems() in Python 2.7) will also fail when values are unhashable objects (like lists, for example). Even if your values are hashable, since sets are semantically unordered, the behavior is undefined in regards to precedence. So don"t do this:

>>> c = dict(a.items() | b.items())

This example demonstrates what happens when values are unhashable:

>>> x = {"a": []}
>>> y = {"b": []}
>>> dict(x.items() | y.items())
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unhashable type: "list"

Here"s an example where y should have precedence, but instead the value from x is retained due to the arbitrary order of sets:

>>> x = {"a": 2}
>>> y = {"a": 1}
>>> dict(x.items() | y.items())
{"a": 2}

Another hack you should not use:

z = dict(x, **y)

This uses the dict constructor and is very fast and memory-efficient (even slightly more so than our two-step process) but unless you know precisely what is happening here (that is, the second dict is being passed as keyword arguments to the dict constructor), it"s difficult to read, it"s not the intended usage, and so it is not Pythonic.

Here"s an example of the usage being remediated in django.

Dictionaries are intended to take hashable keys (e.g. frozensets or tuples), but this method fails in Python 3 when keys are not strings.

>>> c = dict(a, **b)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: keyword arguments must be strings

From the mailing list, Guido van Rossum, the creator of the language, wrote:

I am fine with declaring dict({}, **{1:3}) illegal, since after all it is abuse of the ** mechanism.

and

Apparently dict(x, **y) is going around as "cool hack" for "call x.update(y) and return x". Personally, I find it more despicable than cool.

It is my understanding (as well as the understanding of the creator of the language) that the intended usage for dict(**y) is for creating dictionaries for readability purposes, e.g.:

dict(a=1, b=10, c=11)

instead of

{"a": 1, "b": 10, "c": 11}

Response to comments

Despite what Guido says, dict(x, **y) is in line with the dict specification, which btw. works for both Python 2 and 3. The fact that this only works for string keys is a direct consequence of how keyword parameters work and not a short-coming of dict. Nor is using the ** operator in this place an abuse of the mechanism, in fact, ** was designed precisely to pass dictionaries as keywords.

Again, it doesn"t work for 3 when keys are not strings. The implicit calling contract is that namespaces take ordinary dictionaries, while users must only pass keyword arguments that are strings. All other callables enforced it. dict broke this consistency in Python 2:

>>> foo(**{("a", "b"): None})
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: foo() keywords must be strings
>>> dict(**{("a", "b"): None})
{("a", "b"): None}

This inconsistency was bad given other implementations of Python (PyPy, Jython, IronPython). Thus it was fixed in Python 3, as this usage could be a breaking change.

I submit to you that it is malicious incompetence to intentionally write code that only works in one version of a language or that only works given certain arbitrary constraints.

More comments:

dict(x.items() + y.items()) is still the most readable solution for Python 2. Readability counts.

My response: merge_two_dicts(x, y) actually seems much clearer to me, if we"re actually concerned about readability. And it is not forward compatible, as Python 2 is increasingly deprecated.

{**x, **y} does not seem to handle nested dictionaries. the contents of nested keys are simply overwritten, not merged [...] I ended up being burnt by these answers that do not merge recursively and I was surprised no one mentioned it. In my interpretation of the word "merging" these answers describe "updating one dict with another", and not merging.

Yes. I must refer you back to the question, which is asking for a shallow merge of two dictionaries, with the first"s values being overwritten by the second"s - in a single expression.

Assuming two dictionaries of dictionaries, one might recursively merge them in a single function, but you should be careful not to modify the dictionaries from either source, and the surest way to avoid that is to make a copy when assigning values. As keys must be hashable and are usually therefore immutable, it is pointless to copy them:

from copy import deepcopy

def dict_of_dicts_merge(x, y):
    z = {}
    overlapping_keys = x.keys() & y.keys()
    for key in overlapping_keys:
        z[key] = dict_of_dicts_merge(x[key], y[key])
    for key in x.keys() - overlapping_keys:
        z[key] = deepcopy(x[key])
    for key in y.keys() - overlapping_keys:
        z[key] = deepcopy(y[key])
    return z

Usage:

>>> x = {"a":{1:{}}, "b": {2:{}}}
>>> y = {"b":{10:{}}, "c": {11:{}}}
>>> dict_of_dicts_merge(x, y)
{"b": {2: {}, 10: {}}, "a": {1: {}}, "c": {11: {}}}

Coming up with contingencies for other value types is far beyond the scope of this question, so I will point you at my answer to the canonical question on a "Dictionaries of dictionaries merge".

Less Performant But Correct Ad-hocs

These approaches are less performant, but they will provide correct behavior. They will be much less performant than copy and update or the new unpacking because they iterate through each key-value pair at a higher level of abstraction, but they do respect the order of precedence (latter dictionaries have precedence)

You can also chain the dictionaries manually inside a dict comprehension:

{k: v for d in dicts for k, v in d.items()} # iteritems in Python 2.7

or in Python 2.6 (and perhaps as early as 2.4 when generator expressions were introduced):

dict((k, v) for d in dicts for k, v in d.items()) # iteritems in Python 2

itertools.chain will chain the iterators over the key-value pairs in the correct order:

from itertools import chain
z = dict(chain(x.items(), y.items())) # iteritems in Python 2

Performance Analysis

I"m only going to do the performance analysis of the usages known to behave correctly. (Self-contained so you can copy and paste yourself.)

from timeit import repeat
from itertools import chain

x = dict.fromkeys("abcdefg")
y = dict.fromkeys("efghijk")

def merge_two_dicts(x, y):
    z = x.copy()
    z.update(y)
    return z

min(repeat(lambda: {**x, **y}))
min(repeat(lambda: merge_two_dicts(x, y)))
min(repeat(lambda: {k: v for d in (x, y) for k, v in d.items()}))
min(repeat(lambda: dict(chain(x.items(), y.items()))))
min(repeat(lambda: dict(item for d in (x, y) for item in d.items())))

In Python 3.8.1, NixOS:

>>> min(repeat(lambda: {**x, **y}))
1.0804965235292912
>>> min(repeat(lambda: merge_two_dicts(x, y)))
1.636518670246005
>>> min(repeat(lambda: {k: v for d in (x, y) for k, v in d.items()}))
3.1779992282390594
>>> min(repeat(lambda: dict(chain(x.items(), y.items()))))
2.740647904574871
>>> min(repeat(lambda: dict(item for d in (x, y) for item in d.items())))
4.266070580109954
$ uname -a
Linux nixos 4.19.113 #1-NixOS SMP Wed Mar 25 07:06:15 UTC 2020 x86_64 GNU/Linux

Resources on Dictionaries

Answer #2:

In your case, what you can do is:

z = dict(list(x.items()) + list(y.items()))

This will, as you want it, put the final dict in z, and make the value for key b be properly overridden by the second (y) dict"s value:

>>> x = {"a":1, "b": 2}
>>> y = {"b":10, "c": 11}
>>> z = dict(list(x.items()) + list(y.items()))
>>> z
{"a": 1, "c": 11, "b": 10}

If you use Python 2, you can even remove the list() calls. To create z:

>>> z = dict(x.items() + y.items())
>>> z
{"a": 1, "c": 11, "b": 10}

If you use Python version 3.9.0a4 or greater, then you can directly use:

x = {"a":1, "b": 2}
y = {"b":10, "c": 11}
z = x | y
print(z)
{"a": 1, "c": 11, "b": 10}

Answer #3:

An alternative:

z = x.copy()
z.update(y)

Answer #4:

Another, more concise, option:

z = dict(x, **y)

Note: this has become a popular answer, but it is important to point out that if y has any non-string keys, the fact that this works at all is an abuse of a CPython implementation detail, and it does not work in Python 3, or in PyPy, IronPython, or Jython. Also, Guido is not a fan. So I can"t recommend this technique for forward-compatible or cross-implementation portable code, which really means it should be avoided entirely.

Answer #5:

This probably won"t be a popular answer, but you almost certainly do not want to do this. If you want a copy that"s a merge, then use copy (or deepcopy, depending on what you want) and then update. The two lines of code are much more readable - more Pythonic - than the single line creation with .items() + .items(). Explicit is better than implicit.

In addition, when you use .items() (pre Python 3.0), you"re creating a new list that contains the items from the dict. If your dictionaries are large, then that is quite a lot of overhead (two large lists that will be thrown away as soon as the merged dict is created). update() can work more efficiently, because it can run through the second dict item-by-item.

In terms of time:

>>> timeit.Timer("dict(x, **y)", "x = dict(zip(range(1000), range(1000)))
y=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
15.52571702003479
>>> timeit.Timer("temp = x.copy()
temp.update(y)", "x = dict(zip(range(1000), range(1000)))
y=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
15.694622993469238
>>> timeit.Timer("dict(x.items() + y.items())", "x = dict(zip(range(1000), range(1000)))
y=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
41.484580039978027

IMO the tiny slowdown between the first two is worth it for the readability. In addition, keyword arguments for dictionary creation was only added in Python 2.3, whereas copy() and update() will work in older versions.

Shop

Best laptop for Sims 4

$

Best laptop for Zoom

$499

Best laptop for Minecraft

$590

Best laptop for engineering student

$

Best laptop for development

$

Best laptop for Cricut Maker

$

Best laptop for hacking

$890

Best laptop for Machine Learning

$950

Latest questions

NUMPYNUMPY

psycopg2: insert multiple rows with one query

12 answers

NUMPYNUMPY

How to convert Nonetype to int or string?

12 answers

NUMPYNUMPY

How to specify multiple return types using type-hints

12 answers

NUMPYNUMPY

Javascript Error: IPython is not defined in JupyterLab

12 answers

News

Wiki

Python OpenCV | cv2.putText () method

numpy.arctan2 () in Python

Python | os.path.realpath () method

Python OpenCV | cv2.circle () method

Python OpenCV cv2.cvtColor () method

Python - Move item to the end of the list

time.perf_counter () function in Python

Check if one list is a subset of another in Python

Python os.path.join () method