  # Python | Numpy np.ifft2 () method

NumPy | Python Methods and Functions

Using the `np.ifft2() ` method, we can get a 2-D inverse Fourier transform using ` np.ifft2 ( ) `.

Syntax: ` np.fft2 (Array) `
Return: Return a 2-D series of inverse fourier transformation.

Example # 1:
In this example we can see that using ` np.ifft2 () `, we can get the ` np.ifft2 () ` inverse Fourier transform series using this method.

 ` # NumPy import ` ` import ` ` numpy as np `   ` a ` ` = ` ` np.array ([[` ` 5 ` `, ` ` 4 ` `, ` ` 6 ` `, ` ` 3 ` `, ` ` 7 ` `], [ ` ` - ` ` 1 ` `, ` ` - ` ` 3 ` `, ` ` - ` ` 4 ` `, ` ` - ` ` 7 ` `, ` ` 0 ` `]]) ` ` # using the np.ifft2 () method ` ` gfg ` ` = ` ` np.fft.ifft2 (a) `   ` print ` ` (gfg) `

Exit:

[[1. + 0.j 0.80901699-0.21796276j -0.30901699-0.92330506j
-0.30901699 + 0.92330506j 0.80901699 + 0.21796276j]
[4. + 0.j -0.5854102 + 0.j 0.0854102 + 0.j
0.0854102 + 0.j -0.5854102 + 0.j]]

Example # 2:

` `

` # NumPy import import numpy as np   a = np.array ([[ - 5.5 , 4.4 , - 6.6 , 3.3 , - 7.7 ], [ 1.1 , - 3.3 , 4.4 , - 7.7 , 0 ]]) # using the np method .ifft2 () gfg = np .fft.ifft2 (a)   print (gfg) `

Output:

[[-1.76 + 0.j -0.11 + 0.96624249j -0.11 + 0.30801859j -0.11-0.30801859j
-0.11-0.96624249 j]
[-0.66 + 0.j -0.66 + 0.17149948j -0.66 + 2.99751362j -0.66-2.99751362j
-0.66-0.17149948j]]