Javascript Checks Alphanumeric

| | | | |

👻 Check our latest review to choose the best laptop for Machine Learning engineers and Deep learning tasks!

The Python isalpha () method returns true if a string contains only letters. Python isnumeric () returns true if all characters in a string are numbers. Python isalnum () returns true only if a string contains alphanumeric characters, without symbols.

When working with strings in Python, you may sometimes want to check if those strings contain only letters, only numbers, or only alphanumeric characters. For example, a program that asks a user to enter a user name may want to verify that there are no special characters in the user name chosen by the user.

This is where Python is isalpha () , isnumeric () and isalnum () come into play. You can use these methods to check the contents of a string against certain criteria.

This tutorial will explore how to use isalpha (), isnumeric () and isalnum () built-in code> functions to determine if a string contains only letters, only numbers, or only letters and numbers, respectively. We’ll also explore an example of each of these methods in Python programs.

Python isalpha

The Python string isalpha () method is used to check if a string consists of alphabetic characters only. In other words, isalpha () checks if a string contains only letters.

The Python isalpha () method returns Boolean value True if each character in a string is a letter ; otherwise, it returns the Boolean value False. In Python, a space is not an alphabetic character, so if a string contains a space, the method will return False.

The syntax of isalpha () is as follows:

As you can see, isalpha () does not accept any parameters. Instead, the method is appended to the end of a string value or a variable containing a string.

Let’s take an example to show how this method works.

Let’s say we create a registration form for a scheduling app. To register, potential users must submit their first name, last name, email address and a password. When someone enters a first and middle name, we want to make sure that those names only contain letters so that our program can process them correctly.

We can use the isalpha () to check that the name sent by a user does not understands only letters. Here is an example of a program that could do this function:

When we run our code and insert the value John as last name and 8 as middle name, our program returns the following response:

Let’s break down our code. In the first two lines, we use Python () input encountered hod to collect a user’s first and last name. Next, we use the isalpha () method to check if these names contain only alphabetic characters. When our program evaluates first_name.isalpha (), it returns True because the value stored by our program under first_name contains only letters.

However, when our program evaluates the middle name , it returns false because our user entered a number as the middle name .

Python is numeric

The Python isnumeric () method checks whether all characters in a string are numbers. If each character is a number, isnumeric () returns the value True. Otherwise, the method returns the value false

The syntax of Python IsNumeric () method is as follows:.

Similar to the isalpha () , isnumeric () does not take any parameters. Instead, it’s appended to the end of a string.

Let’s take an example to illustrate how to use isnumeric ().

Let’s say we’re building a multiplication game for fourth graders. Our program generates math problems for students and asks them to enter an answer into our program. However, before we can check if a user’s answer is correct, we need to check if they entered a number.

Here is the code we could use to verify that a user entered a numeric response to the math problem given to them:

When we run our code and type a number, our program returns the following response:

In the first line of our code, we use the input () method to accept a student’s answer to the math problem. Note that input () always returns a string.

In the next line of code we use isnumer ic () to check if the contents of the student response are all numbers In this case the student entered 90, wh ich are all numbers, so as our program declarations True.

Python isalnum

Often times you will want to check if the strings contain only alphanumeric characters i.e. letters and numbers. Here’s where isalnum () can come in handy.

isalnum () is a built-in Python function that checks if all characters in a string are alphanumeric. In other words, isalnum () checks whether a string contains only letters or numbers or both. If all characters are alphanumeric, isalnum () returns True ; . Otherwise, the method returns the value false

The syntax of the isalnum () is as follows:

As that isalpha () and isnumeric (), isalnum () does not take any parameters.

Let’s say we’re building a registration form for a game that asks users to choose a username. We want to require usernames to contain letters and numbers only. If a user chooses a username that includes other characters, our program should present a message stating that their username is invalid.

We could use the following code to achieve this:.

When we run our code and enter the username user123 in our program, our following program declarations:

! If we were to enter the username user123, which includes a non-alphanumeric character, our program would return the following:

When we enter the username user123, isalnum () method returns True, because the string only consists of letters and numbers. Then the contents of our if loop are executed and the message Your new username is user123 is printed to the console. But when we include a non-alphanumeric character in the username, the isalnum () method returns False and our program outputs This username doesn’t is not valid.> to the console.

Conclusion

When working with strings you may want ask you if they contain only letters, only numbers, or only alphanumeric characters. ; s where the isalpha (), isnumeric () and isalnum () methods enter respectively.

Here’s a quick summary of all three.

isalpha Python is a string method that returns true or false, check if a string is made up of only alphabetic characters

IsNumeric Python is a string method that checks if a string consists of numeric characters and returns true or false.

isalnum Python is a string method that checks whether a string is composed of the letters and numbers, no special characters or signs of punctuation, and returns true or false.

You are now ready to start using isalpha (), IsNumeric () and isalnum () like a Python pro!

👻 Read also: what is the best laptop for engineering students?

Javascript Checks Alphanumeric exp: Questions

exp

How do I merge two dictionaries in a single expression (taking union of dictionaries)?

5 answers

Carl Meyer By Carl Meyer

I have two Python dictionaries, and I want to write a single expression that returns these two dictionaries, merged (i.e. taking the union). The update() method would be what I need, if it returned its result instead of modifying a dictionary in-place.

>>> x = {"a": 1, "b": 2}
>>> y = {"b": 10, "c": 11}
>>> z = x.update(y)
>>> print(z)
None
>>> x
{"a": 1, "b": 10, "c": 11}

How can I get that final merged dictionary in z, not x?

(To be extra-clear, the last-one-wins conflict-handling of dict.update() is what I"m looking for as well.)

5839

Answer #1

How can I merge two Python dictionaries in a single expression?

For dictionaries x and y, z becomes a shallowly-merged dictionary with values from y replacing those from x.

  • In Python 3.9.0 or greater (released 17 October 2020): PEP-584, discussed here, was implemented and provides the simplest method:

    z = x | y          # NOTE: 3.9+ ONLY
    
  • In Python 3.5 or greater:

    z = {**x, **y}
    
  • In Python 2, (or 3.4 or lower) write a function:

    def merge_two_dicts(x, y):
        z = x.copy()   # start with keys and values of x
        z.update(y)    # modifies z with keys and values of y
        return z
    

    and now:

    z = merge_two_dicts(x, y)
    

Explanation

Say you have two dictionaries and you want to merge them into a new dictionary without altering the original dictionaries:

x = {"a": 1, "b": 2}
y = {"b": 3, "c": 4}

The desired result is to get a new dictionary (z) with the values merged, and the second dictionary"s values overwriting those from the first.

>>> z
{"a": 1, "b": 3, "c": 4}

A new syntax for this, proposed in PEP 448 and available as of Python 3.5, is

z = {**x, **y}

And it is indeed a single expression.

Note that we can merge in with literal notation as well:

z = {**x, "foo": 1, "bar": 2, **y}

and now:

>>> z
{"a": 1, "b": 3, "foo": 1, "bar": 2, "c": 4}

It is now showing as implemented in the release schedule for 3.5, PEP 478, and it has now made its way into the What"s New in Python 3.5 document.

However, since many organizations are still on Python 2, you may wish to do this in a backward-compatible way. The classically Pythonic way, available in Python 2 and Python 3.0-3.4, is to do this as a two-step process:

z = x.copy()
z.update(y) # which returns None since it mutates z

In both approaches, y will come second and its values will replace x"s values, thus b will point to 3 in our final result.

Not yet on Python 3.5, but want a single expression

If you are not yet on Python 3.5 or need to write backward-compatible code, and you want this in a single expression, the most performant while the correct approach is to put it in a function:

def merge_two_dicts(x, y):
    """Given two dictionaries, merge them into a new dict as a shallow copy."""
    z = x.copy()
    z.update(y)
    return z

and then you have a single expression:

z = merge_two_dicts(x, y)

You can also make a function to merge an arbitrary number of dictionaries, from zero to a very large number:

def merge_dicts(*dict_args):
    """
    Given any number of dictionaries, shallow copy and merge into a new dict,
    precedence goes to key-value pairs in latter dictionaries.
    """
    result = {}
    for dictionary in dict_args:
        result.update(dictionary)
    return result

This function will work in Python 2 and 3 for all dictionaries. e.g. given dictionaries a to g:

z = merge_dicts(a, b, c, d, e, f, g) 

and key-value pairs in g will take precedence over dictionaries a to f, and so on.

Critiques of Other Answers

Don"t use what you see in the formerly accepted answer:

z = dict(x.items() + y.items())

In Python 2, you create two lists in memory for each dict, create a third list in memory with length equal to the length of the first two put together, and then discard all three lists to create the dict. In Python 3, this will fail because you"re adding two dict_items objects together, not two lists -

>>> c = dict(a.items() + b.items())
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: "dict_items" and "dict_items"

and you would have to explicitly create them as lists, e.g. z = dict(list(x.items()) + list(y.items())). This is a waste of resources and computation power.

Similarly, taking the union of items() in Python 3 (viewitems() in Python 2.7) will also fail when values are unhashable objects (like lists, for example). Even if your values are hashable, since sets are semantically unordered, the behavior is undefined in regards to precedence. So don"t do this:

>>> c = dict(a.items() | b.items())

This example demonstrates what happens when values are unhashable:

>>> x = {"a": []}
>>> y = {"b": []}
>>> dict(x.items() | y.items())
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unhashable type: "list"

Here"s an example where y should have precedence, but instead the value from x is retained due to the arbitrary order of sets:

>>> x = {"a": 2}
>>> y = {"a": 1}
>>> dict(x.items() | y.items())
{"a": 2}

Another hack you should not use:

z = dict(x, **y)

This uses the dict constructor and is very fast and memory-efficient (even slightly more so than our two-step process) but unless you know precisely what is happening here (that is, the second dict is being passed as keyword arguments to the dict constructor), it"s difficult to read, it"s not the intended usage, and so it is not Pythonic.

Here"s an example of the usage being remediated in django.

Dictionaries are intended to take hashable keys (e.g. frozensets or tuples), but this method fails in Python 3 when keys are not strings.

>>> c = dict(a, **b)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: keyword arguments must be strings

From the mailing list, Guido van Rossum, the creator of the language, wrote:

I am fine with declaring dict({}, **{1:3}) illegal, since after all it is abuse of the ** mechanism.

and

Apparently dict(x, **y) is going around as "cool hack" for "call x.update(y) and return x". Personally, I find it more despicable than cool.

It is my understanding (as well as the understanding of the creator of the language) that the intended usage for dict(**y) is for creating dictionaries for readability purposes, e.g.:

dict(a=1, b=10, c=11)

instead of

{"a": 1, "b": 10, "c": 11}

Response to comments

Despite what Guido says, dict(x, **y) is in line with the dict specification, which btw. works for both Python 2 and 3. The fact that this only works for string keys is a direct consequence of how keyword parameters work and not a short-coming of dict. Nor is using the ** operator in this place an abuse of the mechanism, in fact, ** was designed precisely to pass dictionaries as keywords.

Again, it doesn"t work for 3 when keys are not strings. The implicit calling contract is that namespaces take ordinary dictionaries, while users must only pass keyword arguments that are strings. All other callables enforced it. dict broke this consistency in Python 2:

>>> foo(**{("a", "b"): None})
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: foo() keywords must be strings
>>> dict(**{("a", "b"): None})
{("a", "b"): None}

This inconsistency was bad given other implementations of Python (PyPy, Jython, IronPython). Thus it was fixed in Python 3, as this usage could be a breaking change.

I submit to you that it is malicious incompetence to intentionally write code that only works in one version of a language or that only works given certain arbitrary constraints.

More comments:

dict(x.items() + y.items()) is still the most readable solution for Python 2. Readability counts.

My response: merge_two_dicts(x, y) actually seems much clearer to me, if we"re actually concerned about readability. And it is not forward compatible, as Python 2 is increasingly deprecated.

{**x, **y} does not seem to handle nested dictionaries. the contents of nested keys are simply overwritten, not merged [...] I ended up being burnt by these answers that do not merge recursively and I was surprised no one mentioned it. In my interpretation of the word "merging" these answers describe "updating one dict with another", and not merging.

Yes. I must refer you back to the question, which is asking for a shallow merge of two dictionaries, with the first"s values being overwritten by the second"s - in a single expression.

Assuming two dictionaries of dictionaries, one might recursively merge them in a single function, but you should be careful not to modify the dictionaries from either source, and the surest way to avoid that is to make a copy when assigning values. As keys must be hashable and are usually therefore immutable, it is pointless to copy them:

from copy import deepcopy

def dict_of_dicts_merge(x, y):
    z = {}
    overlapping_keys = x.keys() & y.keys()
    for key in overlapping_keys:
        z[key] = dict_of_dicts_merge(x[key], y[key])
    for key in x.keys() - overlapping_keys:
        z[key] = deepcopy(x[key])
    for key in y.keys() - overlapping_keys:
        z[key] = deepcopy(y[key])
    return z

Usage:

>>> x = {"a":{1:{}}, "b": {2:{}}}
>>> y = {"b":{10:{}}, "c": {11:{}}}
>>> dict_of_dicts_merge(x, y)
{"b": {2: {}, 10: {}}, "a": {1: {}}, "c": {11: {}}}

Coming up with contingencies for other value types is far beyond the scope of this question, so I will point you at my answer to the canonical question on a "Dictionaries of dictionaries merge".

Less Performant But Correct Ad-hocs

These approaches are less performant, but they will provide correct behavior. They will be much less performant than copy and update or the new unpacking because they iterate through each key-value pair at a higher level of abstraction, but they do respect the order of precedence (latter dictionaries have precedence)

You can also chain the dictionaries manually inside a dict comprehension:

{k: v for d in dicts for k, v in d.items()} # iteritems in Python 2.7

or in Python 2.6 (and perhaps as early as 2.4 when generator expressions were introduced):

dict((k, v) for d in dicts for k, v in d.items()) # iteritems in Python 2

itertools.chain will chain the iterators over the key-value pairs in the correct order:

from itertools import chain
z = dict(chain(x.items(), y.items())) # iteritems in Python 2

Performance Analysis

I"m only going to do the performance analysis of the usages known to behave correctly. (Self-contained so you can copy and paste yourself.)

from timeit import repeat
from itertools import chain

x = dict.fromkeys("abcdefg")
y = dict.fromkeys("efghijk")

def merge_two_dicts(x, y):
    z = x.copy()
    z.update(y)
    return z

min(repeat(lambda: {**x, **y}))
min(repeat(lambda: merge_two_dicts(x, y)))
min(repeat(lambda: {k: v for d in (x, y) for k, v in d.items()}))
min(repeat(lambda: dict(chain(x.items(), y.items()))))
min(repeat(lambda: dict(item for d in (x, y) for item in d.items())))

In Python 3.8.1, NixOS:

>>> min(repeat(lambda: {**x, **y}))
1.0804965235292912
>>> min(repeat(lambda: merge_two_dicts(x, y)))
1.636518670246005
>>> min(repeat(lambda: {k: v for d in (x, y) for k, v in d.items()}))
3.1779992282390594
>>> min(repeat(lambda: dict(chain(x.items(), y.items()))))
2.740647904574871
>>> min(repeat(lambda: dict(item for d in (x, y) for item in d.items())))
4.266070580109954
$ uname -a
Linux nixos 4.19.113 #1-NixOS SMP Wed Mar 25 07:06:15 UTC 2020 x86_64 GNU/Linux

Resources on Dictionaries

5839

Answer #2

In your case, what you can do is:

z = dict(list(x.items()) + list(y.items()))

This will, as you want it, put the final dict in z, and make the value for key b be properly overridden by the second (y) dict"s value:

>>> x = {"a":1, "b": 2}
>>> y = {"b":10, "c": 11}
>>> z = dict(list(x.items()) + list(y.items()))
>>> z
{"a": 1, "c": 11, "b": 10}

If you use Python 2, you can even remove the list() calls. To create z:

>>> z = dict(x.items() + y.items())
>>> z
{"a": 1, "c": 11, "b": 10}

If you use Python version 3.9.0a4 or greater, then you can directly use:

x = {"a":1, "b": 2}
y = {"b":10, "c": 11}
z = x | y
print(z)
{"a": 1, "c": 11, "b": 10}

5839

Answer #3

An alternative:

z = x.copy()
z.update(y)

How to insert newlines on argparse help text?

5 answers

I"m using argparse in Python 2.7 for parsing input options. One of my options is a multiple choice. I want to make a list in its help text, e.g.

from argparse import ArgumentParser

parser = ArgumentParser(description="test")

parser.add_argument("-g", choices=["a", "b", "g", "d", "e"], default="a",
    help="Some option, where
"
         " a = alpha
"
         " b = beta
"
         " g = gamma
"
         " d = delta
"
         " e = epsilon")

parser.parse_args()

However, argparse strips all newlines and consecutive spaces. The result looks like

~/Downloads:52$ python2.7 x.py -h
usage: x.py [-h] [-g {a,b,g,d,e}]

test

optional arguments:
  -h, --help      show this help message and exit
  -g {a,b,g,d,e}  Some option, where a = alpha b = beta g = gamma d = delta e
                  = epsilon

How to insert newlines in the help text?

406

Answer #1

Try using RawTextHelpFormatter:

from argparse import RawTextHelpFormatter
parser = ArgumentParser(description="test", formatter_class=RawTextHelpFormatter)

Is a Python list guaranteed to have its elements stay in the order they are inserted in?

5 answers

If I have the following Python code

>>> x = []
>>> x = x + [1]
>>> x = x + [2]
>>> x = x + [3]
>>> x
[1, 2, 3]

Will x be guaranteed to always be [1,2,3], or are other orderings of the interim elements possible?

366

Answer #1

Yes, the order of elements in a python list is persistent.

Inserting image into IPython notebook markdown

5 answers

I am starting to depend heavily on the IPython notebook app to develop and document algorithms. It is awesome; but there is something that seems like it should be possible, but I can"t figure out how to do it:

I would like to insert a local image into my (local) IPython notebook markdown to aid in documenting an algorithm. I know enough to add something like <img src="image.png"> to the markdown, but that is about as far as my knowledge goes. I assume I could put the image in the directory represented by 127.0.0.1:8888 (or some subdirectory) to be able to access it, but I can"t figure out where that directory is. (I"m working on a mac.) So, is it possible to do what I"m trying to do without too much trouble?

277

Answer #1

Most of the answers given so far go in the wrong direction, suggesting to load additional libraries and use the code instead of markup. In Ipython/Jupyter Notebooks it is very simple. Make sure the cell is indeed in markup and to display a image use:

![alt text](imagename.png "Title")

Further advantage compared to the other methods proposed is that you can display all common file formats including jpg, png, and gif (animations).

Shop

Learn programming in R: courses

$

Best Python online courses for 2022

$

Best laptop for Fortnite

$

Best laptop for Excel

$

Best laptop for Solidworks

$

Best laptop for Roblox

$

Best computer for crypto mining

$

Best laptop for Sims 4

$

Latest questions

NUMPYNUMPY

psycopg2: insert multiple rows with one query

12 answers

NUMPYNUMPY

How to convert Nonetype to int or string?

12 answers

NUMPYNUMPY

How to specify multiple return types using type-hints

12 answers

NUMPYNUMPY

Javascript Error: IPython is not defined in JupyterLab

12 answers


Wiki

Python OpenCV | cv2.putText () method

numpy.arctan2 () in Python

Python | os.path.realpath () method

Python OpenCV | cv2.circle () method

Python OpenCV cv2.cvtColor () method

Python - Move item to the end of the list

time.perf_counter () function in Python

Check if one list is a subset of another in Python

Python os.path.join () method