Prefix array array in Python using accumulate function

accumulate | Python Methods and Functions | sin

Examples:

 Input: arr = [1, 2, 3] Output: sum = [1, 3, 6] Input: arr = [4, 6, 12] Output: sum = [ 4, 10, 22] 

Prefix amount — it is a sequence of partial sums of a given sequence. For example, the cumulative sums of the sequence {a, b, c, ...} are a, a + b, a + b + c, and so on. We can solve this problem quickly in Python by using the accumulation (iterative) method.

# function to find the cumulative sum of an array

from itertools import accumulate

 

def cumulativeSum ( input ):

print ( "Sum:" , list (accumulate ( input )))

  
# Driver program

if __ name__ = = "__ main__" :

input = [ 4 , 6 , 12 ]

  cumulativeSum ( input )

Output:

 Sum = [4, 10, 22] 




Prefix array array in Python using accumulate function: StackOverflow Questions

Answer #1

NEVER grow a DataFrame!

TLDR; (just read the bold text)

Most answers here will tell you how to create an empty DataFrame and fill it out, but no one will tell you that it is a bad thing to do.

Here is my advice: Accumulate data in a list, not a DataFrame.

Use a list to collect your data, then initialise a DataFrame when you are ready. Either a list-of-lists or list-of-dicts format will work, pd.DataFrame accepts both.

data = []
for a, b, c in some_function_that_yields_data():
    data.append([a, b, c])

df = pd.DataFrame(data, columns=["A", "B", "C"])

Pros of this approach:

  1. It is always cheaper to append to a list and create a DataFrame in one go than it is to create an empty DataFrame (or one of NaNs) and append to it over and over again.

  2. Lists also take up less memory and are a much lighter data structure to work with, append, and remove (if needed).

  3. dtypes are automatically inferred (rather than assigning object to all of them).

  4. A RangeIndex is automatically created for your data, instead of you having to take care to assign the correct index to the row you are appending at each iteration.

If you aren"t convinced yet, this is also mentioned in the documentation:

Iteratively appending rows to a DataFrame can be more computationally intensive than a single concatenate. A better solution is to append those rows to a list and then concatenate the list with the original DataFrame all at once.

But what if my function returns smaller DataFrames that I need to combine into one large DataFrame?

That"s fine, you can still do this in linear time by growing or creating a python list of smaller DataFrames, then calling pd.concat.

small_dfs = []
for small_df in some_function_that_yields_dataframes():
    small_dfs.append(small_df)

large_df = pd.concat(small_dfs, ignore_index=True)

or, more concisely:

large_df = pd.concat(
    list(some_function_that_yields_dataframes()), ignore_index=True)


These options are horrible

append or concat inside a loop

Here is the biggest mistake I"ve seen from beginners:

df = pd.DataFrame(columns=["A", "B", "C"])
for a, b, c in some_function_that_yields_data():
    df = df.append({"A": i, "B": b, "C": c}, ignore_index=True) # yuck
    # or similarly,
    # df = pd.concat([df, pd.Series({"A": i, "B": b, "C": c})], ignore_index=True)

Memory is re-allocated for every append or concat operation you have. Couple this with a loop and you have a quadratic complexity operation.

The other mistake associated with df.append is that users tend to forget append is not an in-place function, so the result must be assigned back. You also have to worry about the dtypes:

df = pd.DataFrame(columns=["A", "B", "C"])
df = df.append({"A": 1, "B": 12.3, "C": "xyz"}, ignore_index=True)

df.dtypes
A     object   # yuck!
B    float64
C     object
dtype: object

Dealing with object columns is never a good thing, because pandas cannot vectorize operations on those columns. You will need to do this to fix it:

df.infer_objects().dtypes
A      int64
B    float64
C     object
dtype: object

loc inside a loop

I have also seen loc used to append to a DataFrame that was created empty:

df = pd.DataFrame(columns=["A", "B", "C"])
for a, b, c in some_function_that_yields_data():
    df.loc[len(df)] = [a, b, c]

As before, you have not pre-allocated the amount of memory you need each time, so the memory is re-grown each time you create a new row. It"s just as bad as append, and even more ugly.

Empty DataFrame of NaNs

And then, there"s creating a DataFrame of NaNs, and all the caveats associated therewith.

df = pd.DataFrame(columns=["A", "B", "C"], index=range(5))
df
     A    B    C
0  NaN  NaN  NaN
1  NaN  NaN  NaN
2  NaN  NaN  NaN
3  NaN  NaN  NaN
4  NaN  NaN  NaN

It creates a DataFrame of object columns, like the others.

df.dtypes
A    object  # you DON"T want this
B    object
C    object
dtype: object

Appending still has all the issues as the methods above.

for i, (a, b, c) in enumerate(some_function_that_yields_data()):
    df.iloc[i] = [a, b, c]


The Proof is in the Pudding

Timing these methods is the fastest way to see just how much they differ in terms of their memory and utility.

enter image description here

Benchmarking code for reference.

Answer #2

Short version:

Suppose you have two tensors, where y_hat contains computed scores for each class (for example, from y = W*x +b) and y_true contains one-hot encoded true labels.

y_hat  = ... # Predicted label, e.g. y = tf.matmul(X, W) + b
y_true = ... # True label, one-hot encoded

If you interpret the scores in y_hat as unnormalized log probabilities, then they are logits.

Additionally, the total cross-entropy loss computed in this manner:

y_hat_softmax = tf.nn.softmax(y_hat)
total_loss = tf.reduce_mean(-tf.reduce_sum(y_true * tf.log(y_hat_softmax), [1]))

is essentially equivalent to the total cross-entropy loss computed with the function softmax_cross_entropy_with_logits():

total_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_hat, y_true))

Long version:

In the output layer of your neural network, you will probably compute an array that contains the class scores for each of your training instances, such as from a computation y_hat = W*x + b. To serve as an example, below I"ve created a y_hat as a 2 x 3 array, where the rows correspond to the training instances and the columns correspond to classes. So here there are 2 training instances and 3 classes.

import tensorflow as tf
import numpy as np

sess = tf.Session()

# Create example y_hat.
y_hat = tf.convert_to_tensor(np.array([[0.5, 1.5, 0.1],[2.2, 1.3, 1.7]]))
sess.run(y_hat)
# array([[ 0.5,  1.5,  0.1],
#        [ 2.2,  1.3,  1.7]])

Note that the values are not normalized (i.e. the rows don"t add up to 1). In order to normalize them, we can apply the softmax function, which interprets the input as unnormalized log probabilities (aka logits) and outputs normalized linear probabilities.

y_hat_softmax = tf.nn.softmax(y_hat)
sess.run(y_hat_softmax)
# array([[ 0.227863  ,  0.61939586,  0.15274114],
#        [ 0.49674623,  0.20196195,  0.30129182]])

It"s important to fully understand what the softmax output is saying. Below I"ve shown a table that more clearly represents the output above. It can be seen that, for example, the probability of training instance 1 being "Class 2" is 0.619. The class probabilities for each training instance are normalized, so the sum of each row is 1.0.

                      Pr(Class 1)  Pr(Class 2)  Pr(Class 3)
                    ,--------------------------------------
Training instance 1 | 0.227863   | 0.61939586 | 0.15274114
Training instance 2 | 0.49674623 | 0.20196195 | 0.30129182

So now we have class probabilities for each training instance, where we can take the argmax() of each row to generate a final classification. From above, we may generate that training instance 1 belongs to "Class 2" and training instance 2 belongs to "Class 1".

Are these classifications correct? We need to measure against the true labels from the training set. You will need a one-hot encoded y_true array, where again the rows are training instances and columns are classes. Below I"ve created an example y_true one-hot array where the true label for training instance 1 is "Class 2" and the true label for training instance 2 is "Class 3".

y_true = tf.convert_to_tensor(np.array([[0.0, 1.0, 0.0],[0.0, 0.0, 1.0]]))
sess.run(y_true)
# array([[ 0.,  1.,  0.],
#        [ 0.,  0.,  1.]])

Is the probability distribution in y_hat_softmax close to the probability distribution in y_true? We can use cross-entropy loss to measure the error.

Formula for cross-entropy loss

We can compute the cross-entropy loss on a row-wise basis and see the results. Below we can see that training instance 1 has a loss of 0.479, while training instance 2 has a higher loss of 1.200. This result makes sense because in our example above, y_hat_softmax showed that training instance 1"s highest probability was for "Class 2", which matches training instance 1 in y_true; however, the prediction for training instance 2 showed a highest probability for "Class 1", which does not match the true class "Class 3".

loss_per_instance_1 = -tf.reduce_sum(y_true * tf.log(y_hat_softmax), reduction_indices=[1])
sess.run(loss_per_instance_1)
# array([ 0.4790107 ,  1.19967598])

What we really want is the total loss over all the training instances. So we can compute:

total_loss_1 = tf.reduce_mean(-tf.reduce_sum(y_true * tf.log(y_hat_softmax), reduction_indices=[1]))
sess.run(total_loss_1)
# 0.83934333897877944

Using softmax_cross_entropy_with_logits()

We can instead compute the total cross entropy loss using the tf.nn.softmax_cross_entropy_with_logits() function, as shown below.

loss_per_instance_2 = tf.nn.softmax_cross_entropy_with_logits(y_hat, y_true)
sess.run(loss_per_instance_2)
# array([ 0.4790107 ,  1.19967598])

total_loss_2 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_hat, y_true))
sess.run(total_loss_2)
# 0.83934333897877922

Note that total_loss_1 and total_loss_2 produce essentially equivalent results with some small differences in the very final digits. However, you might as well use the second approach: it takes one less line of code and accumulates less numerical error because the softmax is done for you inside of softmax_cross_entropy_with_logits().

Answer #3

In PyTorch, for every mini-batch during the training phase, we need to explicitly set the gradients to zero before starting to do backpropragation (i.e., updation of Weights and biases) because PyTorch accumulates the gradients on subsequent backward passes. This is convenient while training RNNs. So, the default action has been set to accumulate (i.e. sum) the gradients on every loss.backward() call.

Because of this, when you start your training loop, ideally you should zero out the gradients so that you do the parameter update correctly. Else the gradient would point in some other direction than the intended direction towards the minimum (or maximum, in case of maximization objectives).

Here is a simple example:

import torch
from torch.autograd import Variable
import torch.optim as optim

def linear_model(x, W, b):
    return torch.matmul(x, W) + b

data, targets = ...

W = Variable(torch.randn(4, 3), requires_grad=True)
b = Variable(torch.randn(3), requires_grad=True)

optimizer = optim.Adam([W, b])

for sample, target in zip(data, targets):
    # clear out the gradients of all Variables 
    # in this optimizer (i.e. W, b)
    optimizer.zero_grad()
    output = linear_model(sample, W, b)
    loss = (output - target) ** 2
    loss.backward()
    optimizer.step()

Alternatively, if you"re doing a vanilla gradient descent, then:

W = Variable(torch.randn(4, 3), requires_grad=True)
b = Variable(torch.randn(3), requires_grad=True)

for sample, target in zip(data, targets):
    # clear out the gradients of Variables 
    # (i.e. W, b)
    W.grad.data.zero_()
    b.grad.data.zero_()

    output = linear_model(sample, W, b)
    loss = (output - target) ** 2
    loss.backward()

    W -= learning_rate * W.grad.data
    b -= learning_rate * b.grad.data

Note:

  • The accumulation (i.e., sum) of gradients happen when .backward() is called on the loss tensor.
  • As of v1.7.0, there"s an option of resetting the gradients with None optimizer.zero_grad(set_to_none=True) instead of filling it with a tensor of zeroes. The docs claim that this setting will result in lower memory requirements and a slight improvement in performance but it might be error-prone, if not handled carefully.

Answer #4

np.max is just an alias for np.amax. This function only works on a single input array and finds the value of maximum element in that entire array (returning a scalar). Alternatively, it takes an axis argument and will find the maximum value along an axis of the input array (returning a new array).

>>> a = np.array([[0, 1, 6],
                  [2, 4, 1]])
>>> np.max(a)
6
>>> np.max(a, axis=0) # max of each column
array([2, 4, 6])

The default behaviour of np.maximum is to take two arrays and compute their element-wise maximum. Here, "compatible" means that one array can be broadcast to the other. For example:

>>> b = np.array([3, 6, 1])
>>> c = np.array([4, 2, 9])
>>> np.maximum(b, c)
array([4, 6, 9])

But np.maximum is also a universal function which means that it has other features and methods which come in useful when working with multidimensional arrays. For example you can compute the cumulative maximum over an array (or a particular axis of the array):

>>> d = np.array([2, 0, 3, -4, -2, 7, 9])
>>> np.maximum.accumulate(d)
array([2, 2, 3, 3, 3, 7, 9])

This is not possible with np.max.

You can make np.maximum imitate np.max to a certain extent when using np.maximum.reduce:

>>> np.maximum.reduce(d)
9
>>> np.max(d)
9

Basic testing suggests the two approaches are comparable in performance; and they should be, as np.max() actually calls np.maximum.reduce to do the computation.

Answer #5

NEVER grow a DataFrame!

Yes, people have already explained that you should NEVER grow a DataFrame, and that you should append your data to a list and convert it to a DataFrame once at the end. But do you understand why?

Here are the most important reasons, taken from my post here.

  1. It is always cheaper/faster to append to a list and create a DataFrame in one go.
  2. Lists take up less memory and are a much lighter data structure to work with, append, and remove.
  3. dtypes are automatically inferred for your data. On the flip side, creating an empty frame of NaNs will automatically make them object, which is bad.
  4. An index is automatically created for you, instead of you having to take care to assign the correct index to the row you are appending.

This is The Right Way‚Ñ¢ to accumulate your data

data = []
for a, b, c in some_function_that_yields_data():
    data.append([a, b, c])

df = pd.DataFrame(data, columns=["A", "B", "C"])

These options are horrible

  1. append or concat inside a loop

    append and concat aren"t inherently bad in isolation. The problem starts when you iteratively call them inside a loop - this results in quadratic memory usage.

    # Creates empty DataFrame and appends
    df = pd.DataFrame(columns=["A", "B", "C"])
    for a, b, c in some_function_that_yields_data():
        df = df.append({"A": i, "B": b, "C": c}, ignore_index=True)  
        # This is equally bad:
        # df = pd.concat(
        #       [df, pd.Series({"A": i, "B": b, "C": c})], 
        #       ignore_index=True)
    
  2. Empty DataFrame of NaNs

    Never create a DataFrame of NaNs as the columns are initialized with object (slow, un-vectorizable dtype).

    # Creates DataFrame of NaNs and overwrites values.
    df = pd.DataFrame(columns=["A", "B", "C"], index=range(5))
    for a, b, c in some_function_that_yields_data():
        df.loc[len(df)] = [a, b, c]
    

The Proof is in the Pudding

Timing these methods is the fastest way to see just how much they differ in terms of their memory and utility.

enter image description here

Benchmarking code for reference.


It"s posts like this that remind me why I"m a part of this community. People understand the importance of teaching folks getting the right answer with the right code, not the right answer with wrong code. Now you might argue that it is not an issue to use loc or append if you"re only adding a single row to your DataFrame. However, people often look to this question to add more than just one row - often the requirement is to iteratively add a row inside a loop using data that comes from a function (see related question). In that case it is important to understand that iteratively growing a DataFrame is not a good idea.

Answer #6

TLDR ;)

The rounding problem of input / output has been solved definitively by Python 2.7.0 and 3.1.

A correctly rounded number can be reversibly converted back and forth:
str -> float() -> repr() -> float() ... or Decimal -> float -> str -> Decimal
A Decimal type is not necessary for storage anymore.


(Naturally, it can be necessary to round a result of addition or subtraction of rounded numbers to eliminate the accumulated last bit errors. An explicit Decimal arithmetic can be still handy, but a conversion to string by str() (that is with rounding to 12 valid digits) is good enough usually if no extreme accuracy or no extreme number of successive arithmetic operations is required.)

Infinite test:

import random
from decimal import Decimal
for x in iter(random.random, None):           # Verify FOREVER that rounding is fixed :-)
    assert float(repr(x)) == x                # Reversible repr() conversion.
    assert float(Decimal(repr(x))) == x
    assert len(repr(round(x, 10))) <= 12      # Smart decimal places in repr() after round.
    if x >= 0.1:                              # Implicit rounding to 12 significant digits
        assert str(x) == repr(round(x, 12))   # by str() is good enough for small errors.
        y = 1000 * x                             # Decimal type is excessive for shopping
        assert str(y) == repr(round(y, 12 - 3))  # in a supermaket with Python 2.7+ :-)

Documentation

See the Release notes Python 2.7 - Other Language Changes the fourth paragraph:

Conversions between floating-point numbers and strings are now correctly rounded on most platforms. These conversions occur in many different places: str() on floats and complex numbers; the float and complex constructors; numeric formatting; serializing and de-serializing floats and complex numbers using the marshal, pickle and json modules; parsing of float and imaginary literals in Python code; and Decimal-to-float conversion.

Related to this, the repr() of a floating-point number x now returns a result based on the shortest decimal string that’s guaranteed to round back to x under correct rounding (with round-half-to-even rounding mode). Previously it gave a string based on rounding x to 17 decimal digits.

The related issue


More information: The formatting of float before Python 2.7 was similar to the current numpy.float64. Both types use the same 64 bit IEEE 754 double precision with 52 bit mantissa. A big difference is that np.float64.__repr__ is formatted frequently with an excessive decimal number so that no bit can be lost, but no valid IEEE 754 number exists between 13.949999999999999 and 13.950000000000001. The result is not nice and the conversion repr(float(number_as_string)) is not reversible with numpy. On the other hand: float.__repr__ is formatted so that every digit is important; the sequence is without gaps and the conversion is reversible. Simply: If you perhaps have a numpy.float64 number, convert it to normal float in order to be formatted for humans, not for numeric processors, otherwise nothing more is necessary with Python 2.7+.

Answer #7

If you are not into long explanations, see Paolo Bergantino’s answer.

Decorator Basics

Python’s functions are objects

To understand decorators, you must first understand that functions are objects in Python. This has important consequences. Let’s see why with a simple example :

def shout(word="yes"):
    return word.capitalize()+"!"

print(shout())
# outputs : "Yes!"

# As an object, you can assign the function to a variable like any other object 
scream = shout

# Notice we don"t use parentheses: we are not calling the function,
# we are putting the function "shout" into the variable "scream".
# It means you can then call "shout" from "scream":

print(scream())
# outputs : "Yes!"

# More than that, it means you can remove the old name "shout",
# and the function will still be accessible from "scream"

del shout
try:
    print(shout())
except NameError as e:
    print(e)
    #outputs: "name "shout" is not defined"

print(scream())
# outputs: "Yes!"

Keep this in mind. We’ll circle back to it shortly.

Another interesting property of Python functions is they can be defined inside another function!

def talk():

    # You can define a function on the fly in "talk" ...
    def whisper(word="yes"):
        return word.lower()+"..."

    # ... and use it right away!
    print(whisper())

# You call "talk", that defines "whisper" EVERY TIME you call it, then
# "whisper" is called in "talk". 
talk()
# outputs: 
# "yes..."

# But "whisper" DOES NOT EXIST outside "talk":

try:
    print(whisper())
except NameError as e:
    print(e)
    #outputs : "name "whisper" is not defined"*
    #Python"s functions are objects

Functions references

Okay, still here? Now the fun part...

You’ve seen that functions are objects. Therefore, functions:

  • can be assigned to a variable
  • can be defined in another function

That means that a function can return another function.

def getTalk(kind="shout"):

    # We define functions on the fly
    def shout(word="yes"):
        return word.capitalize()+"!"

    def whisper(word="yes") :
        return word.lower()+"..."

    # Then we return one of them
    if kind == "shout":
        # We don"t use "()", we are not calling the function,
        # we are returning the function object
        return shout  
    else:
        return whisper

# How do you use this strange beast?

# Get the function and assign it to a variable
talk = getTalk()      

# You can see that "talk" is here a function object:
print(talk)
#outputs : <function shout at 0xb7ea817c>

# The object is the one returned by the function:
print(talk())
#outputs : Yes!

# And you can even use it directly if you feel wild:
print(getTalk("whisper")())
#outputs : yes...

There’s more!

If you can return a function, you can pass one as a parameter:

def doSomethingBefore(func): 
    print("I do something before then I call the function you gave me")
    print(func())

doSomethingBefore(scream)
#outputs: 
#I do something before then I call the function you gave me
#Yes!

Well, you just have everything needed to understand decorators. You see, decorators are “wrappers”, which means that they let you execute code before and after the function they decorate without modifying the function itself.

Handcrafted decorators

How you’d do it manually:

# A decorator is a function that expects ANOTHER function as parameter
def my_shiny_new_decorator(a_function_to_decorate):

    # Inside, the decorator defines a function on the fly: the wrapper.
    # This function is going to be wrapped around the original function
    # so it can execute code before and after it.
    def the_wrapper_around_the_original_function():

        # Put here the code you want to be executed BEFORE the original function is called
        print("Before the function runs")

        # Call the function here (using parentheses)
        a_function_to_decorate()

        # Put here the code you want to be executed AFTER the original function is called
        print("After the function runs")

    # At this point, "a_function_to_decorate" HAS NEVER BEEN EXECUTED.
    # We return the wrapper function we have just created.
    # The wrapper contains the function and the code to execute before and after. It’s ready to use!
    return the_wrapper_around_the_original_function

# Now imagine you create a function you don"t want to ever touch again.
def a_stand_alone_function():
    print("I am a stand alone function, don"t you dare modify me")

a_stand_alone_function() 
#outputs: I am a stand alone function, don"t you dare modify me

# Well, you can decorate it to extend its behavior.
# Just pass it to the decorator, it will wrap it dynamically in 
# any code you want and return you a new function ready to be used:

a_stand_alone_function_decorated = my_shiny_new_decorator(a_stand_alone_function)
a_stand_alone_function_decorated()
#outputs:
#Before the function runs
#I am a stand alone function, don"t you dare modify me
#After the function runs

Now, you probably want that every time you call a_stand_alone_function, a_stand_alone_function_decorated is called instead. That’s easy, just overwrite a_stand_alone_function with the function returned by my_shiny_new_decorator:

a_stand_alone_function = my_shiny_new_decorator(a_stand_alone_function)
a_stand_alone_function()
#outputs:
#Before the function runs
#I am a stand alone function, don"t you dare modify me
#After the function runs

# That’s EXACTLY what decorators do!

Decorators demystified

The previous example, using the decorator syntax:

@my_shiny_new_decorator
def another_stand_alone_function():
    print("Leave me alone")

another_stand_alone_function()  
#outputs:  
#Before the function runs
#Leave me alone
#After the function runs

Yes, that’s all, it’s that simple. @decorator is just a shortcut to:

another_stand_alone_function = my_shiny_new_decorator(another_stand_alone_function)

Decorators are just a pythonic variant of the decorator design pattern. There are several classic design patterns embedded in Python to ease development (like iterators).

Of course, you can accumulate decorators:

def bread(func):
    def wrapper():
        print("</"""""">")
        func()
        print("<\______/>")
    return wrapper

def ingredients(func):
    def wrapper():
        print("#tomatoes#")
        func()
        print("~salad~")
    return wrapper

def sandwich(food="--ham--"):
    print(food)

sandwich()
#outputs: --ham--
sandwich = bread(ingredients(sandwich))
sandwich()
#outputs:
#</"""""">
# #tomatoes#
# --ham--
# ~salad~
#<\______/>

Using the Python decorator syntax:

@bread
@ingredients
def sandwich(food="--ham--"):
    print(food)

sandwich()
#outputs:
#</"""""">
# #tomatoes#
# --ham--
# ~salad~
#<\______/>

The order you set the decorators MATTERS:

@ingredients
@bread
def strange_sandwich(food="--ham--"):
    print(food)

strange_sandwich()
#outputs:
##tomatoes#
#</"""""">
# --ham--
#<\______/>
# ~salad~

Now: to answer the question...

As a conclusion, you can easily see how to answer the question:

# The decorator to make it bold
def makebold(fn):
    # The new function the decorator returns
    def wrapper():
        # Insertion of some code before and after
        return "<b>" + fn() + "</b>"
    return wrapper

# The decorator to make it italic
def makeitalic(fn):
    # The new function the decorator returns
    def wrapper():
        # Insertion of some code before and after
        return "<i>" + fn() + "</i>"
    return wrapper

@makebold
@makeitalic
def say():
    return "hello"

print(say())
#outputs: <b><i>hello</i></b>

# This is the exact equivalent to 
def say():
    return "hello"
say = makebold(makeitalic(say))

print(say())
#outputs: <b><i>hello</i></b>

You can now just leave happy, or burn your brain a little bit more and see advanced uses of decorators.


Taking decorators to the next level

Passing arguments to the decorated function

# It’s not black magic, you just have to let the wrapper 
# pass the argument:

def a_decorator_passing_arguments(function_to_decorate):
    def a_wrapper_accepting_arguments(arg1, arg2):
        print("I got args! Look: {0}, {1}".format(arg1, arg2))
        function_to_decorate(arg1, arg2)
    return a_wrapper_accepting_arguments

# Since when you are calling the function returned by the decorator, you are
# calling the wrapper, passing arguments to the wrapper will let it pass them to 
# the decorated function

@a_decorator_passing_arguments
def print_full_name(first_name, last_name):
    print("My name is {0} {1}".format(first_name, last_name))
    
print_full_name("Peter", "Venkman")
# outputs:
#I got args! Look: Peter Venkman
#My name is Peter Venkman

Decorating methods

One nifty thing about Python is that methods and functions are really the same. The only difference is that methods expect that their first argument is a reference to the current object (self).

That means you can build a decorator for methods the same way! Just remember to take self into consideration:

def method_friendly_decorator(method_to_decorate):
    def wrapper(self, lie):
        lie = lie - 3 # very friendly, decrease age even more :-)
        return method_to_decorate(self, lie)
    return wrapper
    
    
class Lucy(object):
    
    def __init__(self):
        self.age = 32
    
    @method_friendly_decorator
    def sayYourAge(self, lie):
        print("I am {0}, what did you think?".format(self.age + lie))
        
l = Lucy()
l.sayYourAge(-3)
#outputs: I am 26, what did you think?

If you’re making general-purpose decorator--one you’ll apply to any function or method, no matter its arguments--then just use *args, **kwargs:

def a_decorator_passing_arbitrary_arguments(function_to_decorate):
    # The wrapper accepts any arguments
    def a_wrapper_accepting_arbitrary_arguments(*args, **kwargs):
        print("Do I have args?:")
        print(args)
        print(kwargs)
        # Then you unpack the arguments, here *args, **kwargs
        # If you are not familiar with unpacking, check:
        # http://www.saltycrane.com/blog/2008/01/how-to-use-args-and-kwargs-in-python/
        function_to_decorate(*args, **kwargs)
    return a_wrapper_accepting_arbitrary_arguments

@a_decorator_passing_arbitrary_arguments
def function_with_no_argument():
    print("Python is cool, no argument here.")

function_with_no_argument()
#outputs
#Do I have args?:
#()
#{}
#Python is cool, no argument here.

@a_decorator_passing_arbitrary_arguments
def function_with_arguments(a, b, c):
    print(a, b, c)
    
function_with_arguments(1,2,3)
#outputs
#Do I have args?:
#(1, 2, 3)
#{}
#1 2 3 
 
@a_decorator_passing_arbitrary_arguments
def function_with_named_arguments(a, b, c, platypus="Why not ?"):
    print("Do {0}, {1} and {2} like platypus? {3}".format(a, b, c, platypus))

function_with_named_arguments("Bill", "Linus", "Steve", platypus="Indeed!")
#outputs
#Do I have args ? :
#("Bill", "Linus", "Steve")
#{"platypus": "Indeed!"}
#Do Bill, Linus and Steve like platypus? Indeed!

class Mary(object):
    
    def __init__(self):
        self.age = 31
    
    @a_decorator_passing_arbitrary_arguments
    def sayYourAge(self, lie=-3): # You can now add a default value
        print("I am {0}, what did you think?".format(self.age + lie))

m = Mary()
m.sayYourAge()
#outputs
# Do I have args?:
#(<__main__.Mary object at 0xb7d303ac>,)
#{}
#I am 28, what did you think?

Passing arguments to the decorator

Great, now what would you say about passing arguments to the decorator itself?

This can get somewhat twisted, since a decorator must accept a function as an argument. Therefore, you cannot pass the decorated function’s arguments directly to the decorator.

Before rushing to the solution, let’s write a little reminder:

# Decorators are ORDINARY functions
def my_decorator(func):
    print("I am an ordinary function")
    def wrapper():
        print("I am function returned by the decorator")
        func()
    return wrapper

# Therefore, you can call it without any "@"

def lazy_function():
    print("zzzzzzzz")

decorated_function = my_decorator(lazy_function)
#outputs: I am an ordinary function
            
# It outputs "I am an ordinary function", because that’s just what you do:
# calling a function. Nothing magic.

@my_decorator
def lazy_function():
    print("zzzzzzzz")
    
#outputs: I am an ordinary function

It’s exactly the same. "my_decorator" is called. So when you @my_decorator, you are telling Python to call the function "labelled by the variable "my_decorator"".

This is important! The label you give can point directly to the decorator—or not.

Let’s get evil. ☺

def decorator_maker():
    
    print("I make decorators! I am executed only once: "
          "when you make me create a decorator.")
            
    def my_decorator(func):
        
        print("I am a decorator! I am executed only when you decorate a function.")
               
        def wrapped():
            print("I am the wrapper around the decorated function. "
                  "I am called when you call the decorated function. "
                  "As the wrapper, I return the RESULT of the decorated function.")
            return func()
        
        print("As the decorator, I return the wrapped function.")
        
        return wrapped
    
    print("As a decorator maker, I return a decorator")
    return my_decorator
            
# Let’s create a decorator. It’s just a new function after all.
new_decorator = decorator_maker()       
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator

# Then we decorate the function
            
def decorated_function():
    print("I am the decorated function.")
   
decorated_function = new_decorator(decorated_function)
#outputs:
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function
     
# Let’s call the function:
decorated_function()
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.

No surprise here.

Let’s do EXACTLY the same thing, but skip all the pesky intermediate variables:

def decorated_function():
    print("I am the decorated function.")
decorated_function = decorator_maker()(decorated_function)
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function.

# Finally:
decorated_function()    
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.

Let’s make it even shorter:

@decorator_maker()
def decorated_function():
    print("I am the decorated function.")
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function.

#Eventually: 
decorated_function()    
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.

Hey, did you see that? We used a function call with the "@" syntax! :-)

So, back to decorators with arguments. If we can use functions to generate the decorator on the fly, we can pass arguments to that function, right?

def decorator_maker_with_arguments(decorator_arg1, decorator_arg2):
    
    print("I make decorators! And I accept arguments: {0}, {1}".format(decorator_arg1, decorator_arg2))
            
    def my_decorator(func):
        # The ability to pass arguments here is a gift from closures.
        # If you are not comfortable with closures, you can assume it’s ok,
        # or read: https://stackoverflow.com/questions/13857/can-you-explain-closures-as-they-relate-to-python
        print("I am the decorator. Somehow you passed me arguments: {0}, {1}".format(decorator_arg1, decorator_arg2))
               
        # Don"t confuse decorator arguments and function arguments!
        def wrapped(function_arg1, function_arg2) :
            print("I am the wrapper around the decorated function.
"
                  "I can access all the variables
"
                  "	- from the decorator: {0} {1}
"
                  "	- from the function call: {2} {3}
"
                  "Then I can pass them to the decorated function"
                  .format(decorator_arg1, decorator_arg2,
                          function_arg1, function_arg2))
            return func(function_arg1, function_arg2)
        
        return wrapped
    
    return my_decorator

@decorator_maker_with_arguments("Leonard", "Sheldon")
def decorated_function_with_arguments(function_arg1, function_arg2):
    print("I am the decorated function and only knows about my arguments: {0}"
           " {1}".format(function_arg1, function_arg2))
          
decorated_function_with_arguments("Rajesh", "Howard")
#outputs:
#I make decorators! And I accept arguments: Leonard Sheldon
#I am the decorator. Somehow you passed me arguments: Leonard Sheldon
#I am the wrapper around the decorated function. 
#I can access all the variables 
#   - from the decorator: Leonard Sheldon 
#   - from the function call: Rajesh Howard 
#Then I can pass them to the decorated function
#I am the decorated function and only knows about my arguments: Rajesh Howard

Here it is: a decorator with arguments. Arguments can be set as variable:

c1 = "Penny"
c2 = "Leslie"

@decorator_maker_with_arguments("Leonard", c1)
def decorated_function_with_arguments(function_arg1, function_arg2):
    print("I am the decorated function and only knows about my arguments:"
           " {0} {1}".format(function_arg1, function_arg2))

decorated_function_with_arguments(c2, "Howard")
#outputs:
#I make decorators! And I accept arguments: Leonard Penny
#I am the decorator. Somehow you passed me arguments: Leonard Penny
#I am the wrapper around the decorated function. 
#I can access all the variables 
#   - from the decorator: Leonard Penny 
#   - from the function call: Leslie Howard 
#Then I can pass them to the decorated function
#I am the decorated function and only know about my arguments: Leslie Howard

As you can see, you can pass arguments to the decorator like any function using this trick. You can even use *args, **kwargs if you wish. But remember decorators are called only once. Just when Python imports the script. You can"t dynamically set the arguments afterwards. When you do "import x", the function is already decorated, so you can"t change anything.


Let’s practice: decorating a decorator

Okay, as a bonus, I"ll give you a snippet to make any decorator accept generically any argument. After all, in order to accept arguments, we created our decorator using another function.

We wrapped the decorator.

Anything else we saw recently that wrapped function?

Oh yes, decorators!

Let’s have some fun and write a decorator for the decorators:

def decorator_with_args(decorator_to_enhance):
    """ 
    This function is supposed to be used as a decorator.
    It must decorate an other function, that is intended to be used as a decorator.
    Take a cup of coffee.
    It will allow any decorator to accept an arbitrary number of arguments,
    saving you the headache to remember how to do that every time.
    """
    
    # We use the same trick we did to pass arguments
    def decorator_maker(*args, **kwargs):
       
        # We create on the fly a decorator that accepts only a function
        # but keeps the passed arguments from the maker.
        def decorator_wrapper(func):
       
            # We return the result of the original decorator, which, after all, 
            # IS JUST AN ORDINARY FUNCTION (which returns a function).
            # Only pitfall: the decorator must have this specific signature or it won"t work:
            return decorator_to_enhance(func, *args, **kwargs)
        
        return decorator_wrapper
    
    return decorator_maker
       

It can be used as follows:

# You create the function you will use as a decorator. And stick a decorator on it :-)
# Don"t forget, the signature is "decorator(func, *args, **kwargs)"
@decorator_with_args 
def decorated_decorator(func, *args, **kwargs): 
    def wrapper(function_arg1, function_arg2):
        print("Decorated with {0} {1}".format(args, kwargs))
        return func(function_arg1, function_arg2)
    return wrapper
    
# Then you decorate the functions you wish with your brand new decorated decorator.

@decorated_decorator(42, 404, 1024)
def decorated_function(function_arg1, function_arg2):
    print("Hello {0} {1}".format(function_arg1, function_arg2))

decorated_function("Universe and", "everything")
#outputs:
#Decorated with (42, 404, 1024) {}
#Hello Universe and everything

# Whoooot!

I know, the last time you had this feeling, it was after listening a guy saying: "before understanding recursion, you must first understand recursion". But now, don"t you feel good about mastering this?


Best practices: decorators

  • Decorators were introduced in Python 2.4, so be sure your code will be run on >= 2.4.
  • Decorators slow down the function call. Keep that in mind.
  • You cannot un-decorate a function. (There are hacks to create decorators that can be removed, but nobody uses them.) So once a function is decorated, it‚Äôs decorated for all the code.
  • Decorators wrap functions, which can make them hard to debug. (This gets better from Python >= 2.5; see below.)

The functools module was introduced in Python 2.5. It includes the function functools.wraps(), which copies the name, module, and docstring of the decorated function to its wrapper.

(Fun fact: functools.wraps() is a decorator! ‚ò∫)

# For debugging, the stacktrace prints you the function __name__
def foo():
    print("foo")
    
print(foo.__name__)
#outputs: foo
    
# With a decorator, it gets messy    
def bar(func):
    def wrapper():
        print("bar")
        return func()
    return wrapper

@bar
def foo():
    print("foo")

print(foo.__name__)
#outputs: wrapper

# "functools" can help for that

import functools

def bar(func):
    # We say that "wrapper", is wrapping "func"
    # and the magic begins
    @functools.wraps(func)
    def wrapper():
        print("bar")
        return func()
    return wrapper

@bar
def foo():
    print("foo")

print(foo.__name__)
#outputs: foo

How can the decorators be useful?

Now the big question: What can I use decorators for?

Seem cool and powerful, but a practical example would be great. Well, there are 1000 possibilities. Classic uses are extending a function behavior from an external lib (you can"t modify it), or for debugging (you don"t want to modify it because it’s temporary).

You can use them to extend several functions in a DRY’s way, like so:

def benchmark(func):
    """
    A decorator that prints the time a function takes
    to execute.
    """
    import time
    def wrapper(*args, **kwargs):
        t = time.clock()
        res = func(*args, **kwargs)
        print("{0} {1}".format(func.__name__, time.clock()-t))
        return res
    return wrapper


def logging(func):
    """
    A decorator that logs the activity of the script.
    (it actually just prints it, but it could be logging!)
    """
    def wrapper(*args, **kwargs):
        res = func(*args, **kwargs)
        print("{0} {1} {2}".format(func.__name__, args, kwargs))
        return res
    return wrapper


def counter(func):
    """
    A decorator that counts and prints the number of times a function has been executed
    """
    def wrapper(*args, **kwargs):
        wrapper.count = wrapper.count + 1
        res = func(*args, **kwargs)
        print("{0} has been used: {1}x".format(func.__name__, wrapper.count))
        return res
    wrapper.count = 0
    return wrapper

@counter
@benchmark
@logging
def reverse_string(string):
    return str(reversed(string))

print(reverse_string("Able was I ere I saw Elba"))
print(reverse_string("A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!"))

#outputs:
#reverse_string ("Able was I ere I saw Elba",) {}
#wrapper 0.0
#wrapper has been used: 1x 
#ablE was I ere I saw elbA
#reverse_string ("A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!",) {}
#wrapper 0.0
#wrapper has been used: 2x
#!amanaP :lanac a ,noep a ,stah eros ,raj a ,hsac ,oloR a ,tur a ,mapS ,snip ,eperc a ,)lemac a ro( niaga gab ananab a ,gat a ,nat a ,gab ananab a ,gag a ,inoracam ,elacrep ,epins ,spam ,arutaroloc a ,shajar ,soreh ,atsap ,eonac a ,nalp a ,nam A

Of course the good thing with decorators is that you can use them right away on almost anything without rewriting. DRY, I said:

@counter
@benchmark
@logging
def get_random_futurama_quote():
    from urllib import urlopen
    result = urlopen("http://subfusion.net/cgi-bin/quote.pl?quote=futurama").read()
    try:
        value = result.split("<br><b><hr><br>")[1].split("<br><br><hr>")[0]
        return value.strip()
    except:
        return "No, I"m ... doesn"t!"

    
print(get_random_futurama_quote())
print(get_random_futurama_quote())

#outputs:
#get_random_futurama_quote () {}
#wrapper 0.02
#wrapper has been used: 1x
#The laws of science be a harsh mistress.
#get_random_futurama_quote () {}
#wrapper 0.01
#wrapper has been used: 2x
#Curse you, merciful Poseidon!

Python itself provides several decorators: property, staticmethod, etc.

  • Django uses decorators to manage caching and view permissions.
  • Twisted to fake inlining asynchronous functions calls.

This really is a large playground.

Answer #8

Efficient solution

Convolution is much better than straightforward approach, but (I guess) it uses FFT and thus quite slow. However specially for computing the running mean the following approach works fine

def running_mean(x, N):
    cumsum = numpy.cumsum(numpy.insert(x, 0, 0)) 
    return (cumsum[N:] - cumsum[:-N]) / float(N)

The code to check

In[3]: x = numpy.random.random(100000)
In[4]: N = 1000
In[5]: %timeit result1 = numpy.convolve(x, numpy.ones((N,))/N, mode="valid")
10 loops, best of 3: 41.4 ms per loop
In[6]: %timeit result2 = running_mean(x, N)
1000 loops, best of 3: 1.04 ms per loop

Note that numpy.allclose(result1, result2) is True, two methods are equivalent. The greater N, the greater difference in time.

warning: although cumsum is faster there will be increased floating point error that may cause your results to be invalid/incorrect/unacceptable

the comments pointed out this floating point error issue here but i am making it more obvious here in the answer..

# demonstrate loss of precision with only 100,000 points
np.random.seed(42)
x = np.random.randn(100000)+1e6
y1 = running_mean_convolve(x, 10)
y2 = running_mean_cumsum(x, 10)
assert np.allclose(y1, y2, rtol=1e-12, atol=0)
  • the more points you accumulate over the greater the floating point error (so 1e5 points is noticable, 1e6 points is more significant, more than 1e6 and you may want to resetting the accumulators)
  • you can cheat by using np.longdouble but your floating point error still will get significant for relatively large number of points (around >1e5 but depends on your data)
  • you can plot the error and see it increasing relatively fast
  • the convolve solution is slower but does not have this floating point loss of precision
  • the uniform_filter1d solution is faster than this cumsum solution AND does not have this floating point loss of precision

Prefix array array in Python using accumulate function: StackOverflow Questions

How do I merge two dictionaries in a single expression (taking union of dictionaries)?

Question by Carl Meyer

I have two Python dictionaries, and I want to write a single expression that returns these two dictionaries, merged (i.e. taking the union). The update() method would be what I need, if it returned its result instead of modifying a dictionary in-place.

>>> x = {"a": 1, "b": 2}
>>> y = {"b": 10, "c": 11}
>>> z = x.update(y)
>>> print(z)
None
>>> x
{"a": 1, "b": 10, "c": 11}

How can I get that final merged dictionary in z, not x?

(To be extra-clear, the last-one-wins conflict-handling of dict.update() is what I"m looking for as well.)

Accessing the index in "for" loops?

Question by Joan Venge

How do I access the index in a for loop like the following?

ints = [8, 23, 45, 12, 78]
for i in ints:
    print("item #{} = {}".format(???, i))

I want to get this output:

item #1 = 8
item #2 = 23
item #3 = 45
item #4 = 12
item #5 = 78

When I loop through it using a for loop, how do I access the loop index, from 1 to 5 in this case?

Iterating over dictionaries using "for" loops

I am a bit puzzled by the following code:

d = {"x": 1, "y": 2, "z": 3} 
for key in d:
    print (key, "corresponds to", d[key])

What I don"t understand is the key portion. How does Python recognize that it needs only to read the key from the dictionary? Is key a special word in Python? Or is it simply a variable?

Using global variables in a function

How can I create or use a global variable in a function?

If I create a global variable in one function, how can I use that global variable in another function? Do I need to store the global variable in a local variable of the function which needs its access?

Manually raising (throwing) an exception in Python

How can I raise an exception in Python so that it can later be caught via an except block?

Calling a function of a module by using its name (a string)

What is the best way to go about calling a function given a string with the function"s name in a Python program. For example, let"s say that I have a module foo, and I have a string whose content is "bar". What is the best way to call foo.bar()?

I need to get the return value of the function, which is why I don"t just use eval. I figured out how to do it by using eval to define a temp function that returns the result of that function call, but I"m hoping that there is a more elegant way to do this.

What is the meaning of single and double underscore before an object name?

Can someone please explain the exact meaning of having single and double leading underscores before an object"s name in Python, and the difference between both?

Also, does that meaning stay the same regardless of whether the object in question is a variable, a function, a method, etc.?

Save plot to image file instead of displaying it using Matplotlib

I am writing a quick-and-dirty script to generate plots on the fly. I am using the code below (from Matplotlib documentation) as a starting point:

from pylab import figure, axes, pie, title, show

# Make a square figure and axes
figure(1, figsize=(6, 6))
ax = axes([0.1, 0.1, 0.8, 0.8])

labels = "Frogs", "Hogs", "Dogs", "Logs"
fracs = [15, 30, 45, 10]

explode = (0, 0.05, 0, 0)
pie(fracs, explode=explode, labels=labels, autopct="%1.1f%%", shadow=True)
title("Raining Hogs and Dogs", bbox={"facecolor": "0.8", "pad": 5})

show()  # Actually, don"t show, just save to foo.png

I don"t want to display the plot on a GUI, instead, I want to save the plot to a file (say foo.png), so that, for example, it can be used in batch scripts. How do I do that?

What are the differences between type() and isinstance()?

What are the differences between these two code fragments?

Using type():

import types

if type(a) is types.DictType:
    do_something()
if type(b) in types.StringTypes:
    do_something_else()

Using isinstance():

if isinstance(a, dict):
    do_something()
if isinstance(b, str) or isinstance(b, unicode):
    do_something_else()

How can I install packages using pip according to the requirements.txt file from a local directory?

Here is the problem:

I have a requirements.txt file that looks like:

BeautifulSoup==3.2.0
Django==1.3
Fabric==1.2.0
Jinja2==2.5.5
PyYAML==3.09
Pygments==1.4
SQLAlchemy==0.7.1
South==0.7.3
amqplib==0.6.1
anyjson==0.3
...

I have a local archive directory containing all the packages + others.

I have created a new virtualenv with

bin/virtualenv testing

Upon activating it, I tried to install the packages according to requirements.txt from the local archive directory.

source bin/activate
pip install -r /path/to/requirements.txt -f file:///path/to/archive/

I got some output that seems to indicate that the installation is fine:

Downloading/unpacking Fabric==1.2.0 (from -r ../testing/requirements.txt (line 3))
  Running setup.py egg_info for package Fabric
    warning: no previously-included files matching "*" found under directory "docs/_build"
    warning: no files found matching "fabfile.py"
Downloading/unpacking South==0.7.3 (from -r ../testing/requirements.txt (line 8))
  Running setup.py egg_info for package South
....

But a later check revealed none of the package is installed properly. I cannot import the package, and none is found in the site-packages directory of my virtualenv. So what went wrong?

Answer #1

The Python 3 range() object doesn"t produce numbers immediately; it is a smart sequence object that produces numbers on demand. All it contains is your start, stop and step values, then as you iterate over the object the next integer is calculated each iteration.

The object also implements the object.__contains__ hook, and calculates if your number is part of its range. Calculating is a (near) constant time operation *. There is never a need to scan through all possible integers in the range.

From the range() object documentation:

The advantage of the range type over a regular list or tuple is that a range object will always take the same (small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and step values, calculating individual items and subranges as needed).

So at a minimum, your range() object would do:

class my_range:
    def __init__(self, start, stop=None, step=1, /):
        if stop is None:
            start, stop = 0, start
        self.start, self.stop, self.step = start, stop, step
        if step < 0:
            lo, hi, step = stop, start, -step
        else:
            lo, hi = start, stop
        self.length = 0 if lo > hi else ((hi - lo - 1) // step) + 1

    def __iter__(self):
        current = self.start
        if self.step < 0:
            while current > self.stop:
                yield current
                current += self.step
        else:
            while current < self.stop:
                yield current
                current += self.step

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        if i < 0:
            i += self.length
        if 0 <= i < self.length:
            return self.start + i * self.step
        raise IndexError("my_range object index out of range")

    def __contains__(self, num):
        if self.step < 0:
            if not (self.stop < num <= self.start):
                return False
        else:
            if not (self.start <= num < self.stop):
                return False
        return (num - self.start) % self.step == 0

This is still missing several things that a real range() supports (such as the .index() or .count() methods, hashing, equality testing, or slicing), but should give you an idea.

I also simplified the __contains__ implementation to only focus on integer tests; if you give a real range() object a non-integer value (including subclasses of int), a slow scan is initiated to see if there is a match, just as if you use a containment test against a list of all the contained values. This was done to continue to support other numeric types that just happen to support equality testing with integers but are not expected to support integer arithmetic as well. See the original Python issue that implemented the containment test.


* Near constant time because Python integers are unbounded and so math operations also grow in time as N grows, making this a O(log N) operation. Since it’s all executed in optimised C code and Python stores integer values in 30-bit chunks, you’d run out of memory before you saw any performance impact due to the size of the integers involved here.

Answer #2

Recommendation for beginners:

This is my personal recommendation for beginners: start by learning virtualenv and pip, tools which work with both Python 2 and 3 and in a variety of situations, and pick up other tools once you start needing them.

PyPI packages not in the standard library:

  • virtualenv is a very popular tool that creates isolated Python environments for Python libraries. If you"re not familiar with this tool, I highly recommend learning it, as it is a very useful tool, and I"ll be making comparisons to it for the rest of this answer.

It works by installing a bunch of files in a directory (eg: env/), and then modifying the PATH environment variable to prefix it with a custom bin directory (eg: env/bin/). An exact copy of the python or python3 binary is placed in this directory, but Python is programmed to look for libraries relative to its path first, in the environment directory. It"s not part of Python"s standard library, but is officially blessed by the PyPA (Python Packaging Authority). Once activated, you can install packages in the virtual environment using pip.

  • pyenv is used to isolate Python versions. For example, you may want to test your code against Python 2.7, 3.6, 3.7 and 3.8, so you"ll need a way to switch between them. Once activated, it prefixes the PATH environment variable with ~/.pyenv/shims, where there are special files matching the Python commands (python, pip). These are not copies of the Python-shipped commands; they are special scripts that decide on the fly which version of Python to run based on the PYENV_VERSION environment variable, or the .python-version file, or the ~/.pyenv/version file. pyenv also makes the process of downloading and installing multiple Python versions easier, using the command pyenv install.

  • pyenv-virtualenv is a plugin for pyenv by the same author as pyenv, to allow you to use pyenv and virtualenv at the same time conveniently. However, if you"re using Python 3.3 or later, pyenv-virtualenv will try to run python -m venv if it is available, instead of virtualenv. You can use virtualenv and pyenv together without pyenv-virtualenv, if you don"t want the convenience features.

  • virtualenvwrapper is a set of extensions to virtualenv (see docs). It gives you commands like mkvirtualenv, lssitepackages, and especially workon for switching between different virtualenv directories. This tool is especially useful if you want multiple virtualenv directories.

  • pyenv-virtualenvwrapper is a plugin for pyenv by the same author as pyenv, to conveniently integrate virtualenvwrapper into pyenv.

  • pipenv aims to combine Pipfile, pip and virtualenv into one command on the command-line. The virtualenv directory typically gets placed in ~/.local/share/virtualenvs/XXX, with XXX being a hash of the path of the project directory. This is different from virtualenv, where the directory is typically in the current working directory. pipenv is meant to be used when developing Python applications (as opposed to libraries). There are alternatives to pipenv, such as poetry, which I won"t list here since this question is only about the packages that are similarly named.

Standard library:

  • pyvenv (not to be confused with pyenv in the previous section) is a script shipped with Python 3 but deprecated in Python 3.6 as it had problems (not to mention the confusing name). In Python 3.6+, the exact equivalent is python3 -m venv.

  • venv is a package shipped with Python 3, which you can run using python3 -m venv (although for some reason some distros separate it out into a separate distro package, such as python3-venv on Ubuntu/Debian). It serves the same purpose as virtualenv, but only has a subset of its features (see a comparison here). virtualenv continues to be more popular than venv, especially since the former supports both Python 2 and 3.

Answer #3

You have four main options for converting types in pandas:

  1. to_numeric() - provides functionality to safely convert non-numeric types (e.g. strings) to a suitable numeric type. (See also to_datetime() and to_timedelta().)

  2. astype() - convert (almost) any type to (almost) any other type (even if it"s not necessarily sensible to do so). Also allows you to convert to categorial types (very useful).

  3. infer_objects() - a utility method to convert object columns holding Python objects to a pandas type if possible.

  4. convert_dtypes() - convert DataFrame columns to the "best possible" dtype that supports pd.NA (pandas" object to indicate a missing value).

Read on for more detailed explanations and usage of each of these methods.


1. to_numeric()

The best way to convert one or more columns of a DataFrame to numeric values is to use pandas.to_numeric().

This function will try to change non-numeric objects (such as strings) into integers or floating point numbers as appropriate.

Basic usage

The input to to_numeric() is a Series or a single column of a DataFrame.

>>> s = pd.Series(["8", 6, "7.5", 3, "0.9"]) # mixed string and numeric values
>>> s
0      8
1      6
2    7.5
3      3
4    0.9
dtype: object

>>> pd.to_numeric(s) # convert everything to float values
0    8.0
1    6.0
2    7.5
3    3.0
4    0.9
dtype: float64

As you can see, a new Series is returned. Remember to assign this output to a variable or column name to continue using it:

# convert Series
my_series = pd.to_numeric(my_series)

# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])

You can also use it to convert multiple columns of a DataFrame via the apply() method:

# convert all columns of DataFrame
df = df.apply(pd.to_numeric) # convert all columns of DataFrame

# convert just columns "a" and "b"
df[["a", "b"]] = df[["a", "b"]].apply(pd.to_numeric)

As long as your values can all be converted, that"s probably all you need.

Error handling

But what if some values can"t be converted to a numeric type?

to_numeric() also takes an errors keyword argument that allows you to force non-numeric values to be NaN, or simply ignore columns containing these values.

Here"s an example using a Series of strings s which has the object dtype:

>>> s = pd.Series(["1", "2", "4.7", "pandas", "10"])
>>> s
0         1
1         2
2       4.7
3    pandas
4        10
dtype: object

The default behaviour is to raise if it can"t convert a value. In this case, it can"t cope with the string "pandas":

>>> pd.to_numeric(s) # or pd.to_numeric(s, errors="raise")
ValueError: Unable to parse string

Rather than fail, we might want "pandas" to be considered a missing/bad numeric value. We can coerce invalid values to NaN as follows using the errors keyword argument:

>>> pd.to_numeric(s, errors="coerce")
0     1.0
1     2.0
2     4.7
3     NaN
4    10.0
dtype: float64

The third option for errors is just to ignore the operation if an invalid value is encountered:

>>> pd.to_numeric(s, errors="ignore")
# the original Series is returned untouched

This last option is particularly useful when you want to convert your entire DataFrame, but don"t not know which of our columns can be converted reliably to a numeric type. In that case just write:

df.apply(pd.to_numeric, errors="ignore")

The function will be applied to each column of the DataFrame. Columns that can be converted to a numeric type will be converted, while columns that cannot (e.g. they contain non-digit strings or dates) will be left alone.

Downcasting

By default, conversion with to_numeric() will give you either a int64 or float64 dtype (or whatever integer width is native to your platform).

That"s usually what you want, but what if you wanted to save some memory and use a more compact dtype, like float32, or int8?

to_numeric() gives you the option to downcast to either "integer", "signed", "unsigned", "float". Here"s an example for a simple series s of integer type:

>>> s = pd.Series([1, 2, -7])
>>> s
0    1
1    2
2   -7
dtype: int64

Downcasting to "integer" uses the smallest possible integer that can hold the values:

>>> pd.to_numeric(s, downcast="integer")
0    1
1    2
2   -7
dtype: int8

Downcasting to "float" similarly picks a smaller than normal floating type:

>>> pd.to_numeric(s, downcast="float")
0    1.0
1    2.0
2   -7.0
dtype: float32

2. astype()

The astype() method enables you to be explicit about the dtype you want your DataFrame or Series to have. It"s very versatile in that you can try and go from one type to the any other.

Basic usage

Just pick a type: you can use a NumPy dtype (e.g. np.int16), some Python types (e.g. bool), or pandas-specific types (like the categorical dtype).

Call the method on the object you want to convert and astype() will try and convert it for you:

# convert all DataFrame columns to the int64 dtype
df = df.astype(int)

# convert column "a" to int64 dtype and "b" to complex type
df = df.astype({"a": int, "b": complex})

# convert Series to float16 type
s = s.astype(np.float16)

# convert Series to Python strings
s = s.astype(str)

# convert Series to categorical type - see docs for more details
s = s.astype("category")

Notice I said "try" - if astype() does not know how to convert a value in the Series or DataFrame, it will raise an error. For example if you have a NaN or inf value you"ll get an error trying to convert it to an integer.

As of pandas 0.20.0, this error can be suppressed by passing errors="ignore". Your original object will be return untouched.

Be careful

astype() is powerful, but it will sometimes convert values "incorrectly". For example:

>>> s = pd.Series([1, 2, -7])
>>> s
0    1
1    2
2   -7
dtype: int64

These are small integers, so how about converting to an unsigned 8-bit type to save memory?

>>> s.astype(np.uint8)
0      1
1      2
2    249
dtype: uint8

The conversion worked, but the -7 was wrapped round to become 249 (i.e. 28 - 7)!

Trying to downcast using pd.to_numeric(s, downcast="unsigned") instead could help prevent this error.


3. infer_objects()

Version 0.21.0 of pandas introduced the method infer_objects() for converting columns of a DataFrame that have an object datatype to a more specific type (soft conversions).

For example, here"s a DataFrame with two columns of object type. One holds actual integers and the other holds strings representing integers:

>>> df = pd.DataFrame({"a": [7, 1, 5], "b": ["3","2","1"]}, dtype="object")
>>> df.dtypes
a    object
b    object
dtype: object

Using infer_objects(), you can change the type of column "a" to int64:

>>> df = df.infer_objects()
>>> df.dtypes
a     int64
b    object
dtype: object

Column "b" has been left alone since its values were strings, not integers. If you wanted to try and force the conversion of both columns to an integer type, you could use df.astype(int) instead.


4. convert_dtypes()

Version 1.0 and above includes a method convert_dtypes() to convert Series and DataFrame columns to the best possible dtype that supports the pd.NA missing value.

Here "best possible" means the type most suited to hold the values. For example, this a pandas integer type if all of the values are integers (or missing values): an object column of Python integer objects is converted to Int64, a column of NumPy int32 values will become the pandas dtype Int32.

With our object DataFrame df, we get the following result:

>>> df.convert_dtypes().dtypes                                             
a     Int64
b    string
dtype: object

Since column "a" held integer values, it was converted to the Int64 type (which is capable of holding missing values, unlike int64).

Column "b" contained string objects, so was changed to pandas" string dtype.

By default, this method will infer the type from object values in each column. We can change this by passing infer_objects=False:

>>> df.convert_dtypes(infer_objects=False).dtypes                          
a    object
b    string
dtype: object

Now column "a" remained an object column: pandas knows it can be described as an "integer" column (internally it ran infer_dtype) but didn"t infer exactly what dtype of integer it should have so did not convert it. Column "b" was again converted to "string" dtype as it was recognised as holding "string" values.

Answer #4

Since this question was asked in 2010, there has been real simplification in how to do simple multithreading with Python with map and pool.

The code below comes from an article/blog post that you should definitely check out (no affiliation) - Parallelism in one line: A Better Model for Day to Day Threading Tasks. I"ll summarize below - it ends up being just a few lines of code:

from multiprocessing.dummy import Pool as ThreadPool
pool = ThreadPool(4)
results = pool.map(my_function, my_array)

Which is the multithreaded version of:

results = []
for item in my_array:
    results.append(my_function(item))

Description

Map is a cool little function, and the key to easily injecting parallelism into your Python code. For those unfamiliar, map is something lifted from functional languages like Lisp. It is a function which maps another function over a sequence.

Map handles the iteration over the sequence for us, applies the function, and stores all of the results in a handy list at the end.

Enter image description here


Implementation

Parallel versions of the map function are provided by two libraries:multiprocessing, and also its little known, but equally fantastic step child:multiprocessing.dummy.

multiprocessing.dummy is exactly the same as multiprocessing module, but uses threads instead (an important distinction - use multiple processes for CPU-intensive tasks; threads for (and during) I/O):

multiprocessing.dummy replicates the API of multiprocessing, but is no more than a wrapper around the threading module.

import urllib2
from multiprocessing.dummy import Pool as ThreadPool

urls = [
  "http://www.python.org",
  "http://www.python.org/about/",
  "http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html",
  "http://www.python.org/doc/",
  "http://www.python.org/download/",
  "http://www.python.org/getit/",
  "http://www.python.org/community/",
  "https://wiki.python.org/moin/",
]

# Make the Pool of workers
pool = ThreadPool(4)

# Open the URLs in their own threads
# and return the results
results = pool.map(urllib2.urlopen, urls)

# Close the pool and wait for the work to finish
pool.close()
pool.join()

And the timing results:

Single thread:   14.4 seconds
       4 Pool:   3.1 seconds
       8 Pool:   1.4 seconds
      13 Pool:   1.3 seconds

Passing multiple arguments (works like this only in Python 3.3 and later):

To pass multiple arrays:

results = pool.starmap(function, zip(list_a, list_b))

Or to pass a constant and an array:

results = pool.starmap(function, zip(itertools.repeat(constant), list_a))

If you are using an earlier version of Python, you can pass multiple arguments via this workaround).

(Thanks to user136036 for the helpful comment.)

Answer #5

How to iterate over rows in a DataFrame in Pandas?

Answer: DON"T*!

Iteration in Pandas is an anti-pattern and is something you should only do when you have exhausted every other option. You should not use any function with "iter" in its name for more than a few thousand rows or you will have to get used to a lot of waiting.

Do you want to print a DataFrame? Use DataFrame.to_string().

Do you want to compute something? In that case, search for methods in this order (list modified from here):

  1. Vectorization
  2. Cython routines
  3. List Comprehensions (vanilla for loop)
  4. DataFrame.apply(): i)  Reductions that can be performed in Cython, ii) Iteration in Python space
  5. DataFrame.itertuples() and iteritems()
  6. DataFrame.iterrows()

iterrows and itertuples (both receiving many votes in answers to this question) should be used in very rare circumstances, such as generating row objects/nametuples for sequential processing, which is really the only thing these functions are useful for.

Appeal to Authority

The documentation page on iteration has a huge red warning box that says:

Iterating through pandas objects is generally slow. In many cases, iterating manually over the rows is not needed [...].

* It"s actually a little more complicated than "don"t". df.iterrows() is the correct answer to this question, but "vectorize your ops" is the better one. I will concede that there are circumstances where iteration cannot be avoided (for example, some operations where the result depends on the value computed for the previous row). However, it takes some familiarity with the library to know when. If you"re not sure whether you need an iterative solution, you probably don"t. PS: To know more about my rationale for writing this answer, skip to the very bottom.


Faster than Looping: Vectorization, Cython

A good number of basic operations and computations are "vectorised" by pandas (either through NumPy, or through Cythonized functions). This includes arithmetic, comparisons, (most) reductions, reshaping (such as pivoting), joins, and groupby operations. Look through the documentation on Essential Basic Functionality to find a suitable vectorised method for your problem.

If none exists, feel free to write your own using custom Cython extensions.


Next Best Thing: List Comprehensions*

List comprehensions should be your next port of call if 1) there is no vectorized solution available, 2) performance is important, but not important enough to go through the hassle of cythonizing your code, and 3) you"re trying to perform elementwise transformation on your code. There is a good amount of evidence to suggest that list comprehensions are sufficiently fast (and even sometimes faster) for many common Pandas tasks.

The formula is simple,

# Iterating over one column - `f` is some function that processes your data
result = [f(x) for x in df["col"]]
# Iterating over two columns, use `zip`
result = [f(x, y) for x, y in zip(df["col1"], df["col2"])]
# Iterating over multiple columns - same data type
result = [f(row[0], ..., row[n]) for row in df[["col1", ...,"coln"]].to_numpy()]
# Iterating over multiple columns - differing data type
result = [f(row[0], ..., row[n]) for row in zip(df["col1"], ..., df["coln"])]

If you can encapsulate your business logic into a function, you can use a list comprehension that calls it. You can make arbitrarily complex things work through the simplicity and speed of raw Python code.

Caveats

List comprehensions assume that your data is easy to work with - what that means is your data types are consistent and you don"t have NaNs, but this cannot always be guaranteed.

  1. The first one is more obvious, but when dealing with NaNs, prefer in-built pandas methods if they exist (because they have much better corner-case handling logic), or ensure your business logic includes appropriate NaN handling logic.
  2. When dealing with mixed data types you should iterate over zip(df["A"], df["B"], ...) instead of df[["A", "B"]].to_numpy() as the latter implicitly upcasts data to the most common type. As an example if A is numeric and B is string, to_numpy() will cast the entire array to string, which may not be what you want. Fortunately zipping your columns together is the most straightforward workaround to this.

*Your mileage may vary for the reasons outlined in the Caveats section above.


An Obvious Example

Let"s demonstrate the difference with a simple example of adding two pandas columns A + B. This is a vectorizable operaton, so it will be easy to contrast the performance of the methods discussed above.

Benchmarking code, for your reference. The line at the bottom measures a function written in numpandas, a style of Pandas that mixes heavily with NumPy to squeeze out maximum performance. Writing numpandas code should be avoided unless you know what you"re doing. Stick to the API where you can (i.e., prefer vec over vec_numpy).

I should mention, however, that it isn"t always this cut and dry. Sometimes the answer to "what is the best method for an operation" is "it depends on your data". My advice is to test out different approaches on your data before settling on one.


Further Reading

* Pandas string methods are "vectorized" in the sense that they are specified on the series but operate on each element. The underlying mechanisms are still iterative, because string operations are inherently hard to vectorize.


Why I Wrote this Answer

A common trend I notice from new users is to ask questions of the form "How can I iterate over my df to do X?". Showing code that calls iterrows() while doing something inside a for loop. Here is why. A new user to the library who has not been introduced to the concept of vectorization will likely envision the code that solves their problem as iterating over their data to do something. Not knowing how to iterate over a DataFrame, the first thing they do is Google it and end up here, at this question. They then see the accepted answer telling them how to, and they close their eyes and run this code without ever first questioning if iteration is not the right thing to do.

The aim of this answer is to help new users understand that iteration is not necessarily the solution to every problem, and that better, faster and more idiomatic solutions could exist, and that it is worth investing time in exploring them. I"m not trying to start a war of iteration vs. vectorization, but I want new users to be informed when developing solutions to their problems with this library.

Answer #6

In Python, what is the purpose of __slots__ and what are the cases one should avoid this?

TLDR:

The special attribute __slots__ allows you to explicitly state which instance attributes you expect your object instances to have, with the expected results:

  1. faster attribute access.
  2. space savings in memory.

The space savings is from

  1. Storing value references in slots instead of __dict__.
  2. Denying __dict__ and __weakref__ creation if parent classes deny them and you declare __slots__.

Quick Caveats

Small caveat, you should only declare a particular slot one time in an inheritance tree. For example:

class Base:
    __slots__ = "foo", "bar"

class Right(Base):
    __slots__ = "baz", 

class Wrong(Base):
    __slots__ = "foo", "bar", "baz"        # redundant foo and bar

Python doesn"t object when you get this wrong (it probably should), problems might not otherwise manifest, but your objects will take up more space than they otherwise should. Python 3.8:

>>> from sys import getsizeof
>>> getsizeof(Right()), getsizeof(Wrong())
(56, 72)

This is because the Base"s slot descriptor has a slot separate from the Wrong"s. This shouldn"t usually come up, but it could:

>>> w = Wrong()
>>> w.foo = "foo"
>>> Base.foo.__get__(w)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: foo
>>> Wrong.foo.__get__(w)
"foo"

The biggest caveat is for multiple inheritance - multiple "parent classes with nonempty slots" cannot be combined.

To accommodate this restriction, follow best practices: Factor out all but one or all parents" abstraction which their concrete class respectively and your new concrete class collectively will inherit from - giving the abstraction(s) empty slots (just like abstract base classes in the standard library).

See section on multiple inheritance below for an example.

Requirements:

  • To have attributes named in __slots__ to actually be stored in slots instead of a __dict__, a class must inherit from object (automatic in Python 3, but must be explicit in Python 2).

  • To prevent the creation of a __dict__, you must inherit from object and all classes in the inheritance must declare __slots__ and none of them can have a "__dict__" entry.

There are a lot of details if you wish to keep reading.

Why use __slots__: Faster attribute access.

The creator of Python, Guido van Rossum, states that he actually created __slots__ for faster attribute access.

It is trivial to demonstrate measurably significant faster access:

import timeit

class Foo(object): __slots__ = "foo",

class Bar(object): pass

slotted = Foo()
not_slotted = Bar()

def get_set_delete_fn(obj):
    def get_set_delete():
        obj.foo = "foo"
        obj.foo
        del obj.foo
    return get_set_delete

and

>>> min(timeit.repeat(get_set_delete_fn(slotted)))
0.2846834529991611
>>> min(timeit.repeat(get_set_delete_fn(not_slotted)))
0.3664822799983085

The slotted access is almost 30% faster in Python 3.5 on Ubuntu.

>>> 0.3664822799983085 / 0.2846834529991611
1.2873325658284342

In Python 2 on Windows I have measured it about 15% faster.

Why use __slots__: Memory Savings

Another purpose of __slots__ is to reduce the space in memory that each object instance takes up.

My own contribution to the documentation clearly states the reasons behind this:

The space saved over using __dict__ can be significant.

SQLAlchemy attributes a lot of memory savings to __slots__.

To verify this, using the Anaconda distribution of Python 2.7 on Ubuntu Linux, with guppy.hpy (aka heapy) and sys.getsizeof, the size of a class instance without __slots__ declared, and nothing else, is 64 bytes. That does not include the __dict__. Thank you Python for lazy evaluation again, the __dict__ is apparently not called into existence until it is referenced, but classes without data are usually useless. When called into existence, the __dict__ attribute is a minimum of 280 bytes additionally.

In contrast, a class instance with __slots__ declared to be () (no data) is only 16 bytes, and 56 total bytes with one item in slots, 64 with two.

For 64 bit Python, I illustrate the memory consumption in bytes in Python 2.7 and 3.6, for __slots__ and __dict__ (no slots defined) for each point where the dict grows in 3.6 (except for 0, 1, and 2 attributes):

       Python 2.7             Python 3.6
attrs  __slots__  __dict__*   __slots__  __dict__* | *(no slots defined)
none   16         56 + 272†   16         56 + 112† | †if __dict__ referenced
one    48         56 + 272    48         56 + 112
two    56         56 + 272    56         56 + 112
six    88         56 + 1040   88         56 + 152
11     128        56 + 1040   128        56 + 240
22     216        56 + 3344   216        56 + 408     
43     384        56 + 3344   384        56 + 752

So, in spite of smaller dicts in Python 3, we see how nicely __slots__ scale for instances to save us memory, and that is a major reason you would want to use __slots__.

Just for completeness of my notes, note that there is a one-time cost per slot in the class"s namespace of 64 bytes in Python 2, and 72 bytes in Python 3, because slots use data descriptors like properties, called "members".

>>> Foo.foo
<member "foo" of "Foo" objects>
>>> type(Foo.foo)
<class "member_descriptor">
>>> getsizeof(Foo.foo)
72

Demonstration of __slots__:

To deny the creation of a __dict__, you must subclass object. Everything subclasses object in Python 3, but in Python 2 you had to be explicit:

class Base(object): 
    __slots__ = ()

now:

>>> b = Base()
>>> b.a = "a"
Traceback (most recent call last):
  File "<pyshell#38>", line 1, in <module>
    b.a = "a"
AttributeError: "Base" object has no attribute "a"

Or subclass another class that defines __slots__

class Child(Base):
    __slots__ = ("a",)

and now:

c = Child()
c.a = "a"

but:

>>> c.b = "b"
Traceback (most recent call last):
  File "<pyshell#42>", line 1, in <module>
    c.b = "b"
AttributeError: "Child" object has no attribute "b"

To allow __dict__ creation while subclassing slotted objects, just add "__dict__" to the __slots__ (note that slots are ordered, and you shouldn"t repeat slots that are already in parent classes):

class SlottedWithDict(Child): 
    __slots__ = ("__dict__", "b")

swd = SlottedWithDict()
swd.a = "a"
swd.b = "b"
swd.c = "c"

and

>>> swd.__dict__
{"c": "c"}

Or you don"t even need to declare __slots__ in your subclass, and you will still use slots from the parents, but not restrict the creation of a __dict__:

class NoSlots(Child): pass
ns = NoSlots()
ns.a = "a"
ns.b = "b"

And:

>>> ns.__dict__
{"b": "b"}

However, __slots__ may cause problems for multiple inheritance:

class BaseA(object): 
    __slots__ = ("a",)

class BaseB(object): 
    __slots__ = ("b",)

Because creating a child class from parents with both non-empty slots fails:

>>> class Child(BaseA, BaseB): __slots__ = ()
Traceback (most recent call last):
  File "<pyshell#68>", line 1, in <module>
    class Child(BaseA, BaseB): __slots__ = ()
TypeError: Error when calling the metaclass bases
    multiple bases have instance lay-out conflict

If you run into this problem, You could just remove __slots__ from the parents, or if you have control of the parents, give them empty slots, or refactor to abstractions:

from abc import ABC

class AbstractA(ABC):
    __slots__ = ()

class BaseA(AbstractA): 
    __slots__ = ("a",)

class AbstractB(ABC):
    __slots__ = ()

class BaseB(AbstractB): 
    __slots__ = ("b",)

class Child(AbstractA, AbstractB): 
    __slots__ = ("a", "b")

c = Child() # no problem!

Add "__dict__" to __slots__ to get dynamic assignment:

class Foo(object):
    __slots__ = "bar", "baz", "__dict__"

and now:

>>> foo = Foo()
>>> foo.boink = "boink"

So with "__dict__" in slots we lose some of the size benefits with the upside of having dynamic assignment and still having slots for the names we do expect.

When you inherit from an object that isn"t slotted, you get the same sort of semantics when you use __slots__ - names that are in __slots__ point to slotted values, while any other values are put in the instance"s __dict__.

Avoiding __slots__ because you want to be able to add attributes on the fly is actually not a good reason - just add "__dict__" to your __slots__ if this is required.

You can similarly add __weakref__ to __slots__ explicitly if you need that feature.

Set to empty tuple when subclassing a namedtuple:

The namedtuple builtin make immutable instances that are very lightweight (essentially, the size of tuples) but to get the benefits, you need to do it yourself if you subclass them:

from collections import namedtuple
class MyNT(namedtuple("MyNT", "bar baz")):
    """MyNT is an immutable and lightweight object"""
    __slots__ = ()

usage:

>>> nt = MyNT("bar", "baz")
>>> nt.bar
"bar"
>>> nt.baz
"baz"

And trying to assign an unexpected attribute raises an AttributeError because we have prevented the creation of __dict__:

>>> nt.quux = "quux"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: "MyNT" object has no attribute "quux"

You can allow __dict__ creation by leaving off __slots__ = (), but you can"t use non-empty __slots__ with subtypes of tuple.

Biggest Caveat: Multiple inheritance

Even when non-empty slots are the same for multiple parents, they cannot be used together:

class Foo(object): 
    __slots__ = "foo", "bar"
class Bar(object):
    __slots__ = "foo", "bar" # alas, would work if empty, i.e. ()

>>> class Baz(Foo, Bar): pass
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Error when calling the metaclass bases
    multiple bases have instance lay-out conflict

Using an empty __slots__ in the parent seems to provide the most flexibility, allowing the child to choose to prevent or allow (by adding "__dict__" to get dynamic assignment, see section above) the creation of a __dict__:

class Foo(object): __slots__ = ()
class Bar(object): __slots__ = ()
class Baz(Foo, Bar): __slots__ = ("foo", "bar")
b = Baz()
b.foo, b.bar = "foo", "bar"

You don"t have to have slots - so if you add them, and remove them later, it shouldn"t cause any problems.

Going out on a limb here: If you"re composing mixins or using abstract base classes, which aren"t intended to be instantiated, an empty __slots__ in those parents seems to be the best way to go in terms of flexibility for subclassers.

To demonstrate, first, let"s create a class with code we"d like to use under multiple inheritance

class AbstractBase:
    __slots__ = ()
    def __init__(self, a, b):
        self.a = a
        self.b = b
    def __repr__(self):
        return f"{type(self).__name__}({repr(self.a)}, {repr(self.b)})"

We could use the above directly by inheriting and declaring the expected slots:

class Foo(AbstractBase):
    __slots__ = "a", "b"

But we don"t care about that, that"s trivial single inheritance, we need another class we might also inherit from, maybe with a noisy attribute:

class AbstractBaseC:
    __slots__ = ()
    @property
    def c(self):
        print("getting c!")
        return self._c
    @c.setter
    def c(self, arg):
        print("setting c!")
        self._c = arg

Now if both bases had nonempty slots, we couldn"t do the below. (In fact, if we wanted, we could have given AbstractBase nonempty slots a and b, and left them out of the below declaration - leaving them in would be wrong):

class Concretion(AbstractBase, AbstractBaseC):
    __slots__ = "a b _c".split()

And now we have functionality from both via multiple inheritance, and can still deny __dict__ and __weakref__ instantiation:

>>> c = Concretion("a", "b")
>>> c.c = c
setting c!
>>> c.c
getting c!
Concretion("a", "b")
>>> c.d = "d"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: "Concretion" object has no attribute "d"

Other cases to avoid slots:

  • Avoid them when you want to perform __class__ assignment with another class that doesn"t have them (and you can"t add them) unless the slot layouts are identical. (I am very interested in learning who is doing this and why.)
  • Avoid them if you want to subclass variable length builtins like long, tuple, or str, and you want to add attributes to them.
  • Avoid them if you insist on providing default values via class attributes for instance variables.

You may be able to tease out further caveats from the rest of the __slots__ documentation (the 3.7 dev docs are the most current), which I have made significant recent contributions to.

Critiques of other answers

The current top answers cite outdated information and are quite hand-wavy and miss the mark in some important ways.

Do not "only use __slots__ when instantiating lots of objects"

I quote:

"You would want to use __slots__ if you are going to instantiate a lot (hundreds, thousands) of objects of the same class."

Abstract Base Classes, for example, from the collections module, are not instantiated, yet __slots__ are declared for them.

Why?

If a user wishes to deny __dict__ or __weakref__ creation, those things must not be available in the parent classes.

__slots__ contributes to reusability when creating interfaces or mixins.

It is true that many Python users aren"t writing for reusability, but when you are, having the option to deny unnecessary space usage is valuable.

__slots__ doesn"t break pickling

When pickling a slotted object, you may find it complains with a misleading TypeError:

>>> pickle.loads(pickle.dumps(f))
TypeError: a class that defines __slots__ without defining __getstate__ cannot be pickled

This is actually incorrect. This message comes from the oldest protocol, which is the default. You can select the latest protocol with the -1 argument. In Python 2.7 this would be 2 (which was introduced in 2.3), and in 3.6 it is 4.

>>> pickle.loads(pickle.dumps(f, -1))
<__main__.Foo object at 0x1129C770>

in Python 2.7:

>>> pickle.loads(pickle.dumps(f, 2))
<__main__.Foo object at 0x1129C770>

in Python 3.6

>>> pickle.loads(pickle.dumps(f, 4))
<__main__.Foo object at 0x1129C770>

So I would keep this in mind, as it is a solved problem.

Critique of the (until Oct 2, 2016) accepted answer

The first paragraph is half short explanation, half predictive. Here"s the only part that actually answers the question

The proper use of __slots__ is to save space in objects. Instead of having a dynamic dict that allows adding attributes to objects at anytime, there is a static structure which does not allow additions after creation. This saves the overhead of one dict for every object that uses slots

The second half is wishful thinking, and off the mark:

While this is sometimes a useful optimization, it would be completely unnecessary if the Python interpreter was dynamic enough so that it would only require the dict when there actually were additions to the object.

Python actually does something similar to this, only creating the __dict__ when it is accessed, but creating lots of objects with no data is fairly ridiculous.

The second paragraph oversimplifies and misses actual reasons to avoid __slots__. The below is not a real reason to avoid slots (for actual reasons, see the rest of my answer above.):

They change the behavior of the objects that have slots in a way that can be abused by control freaks and static typing weenies.

It then goes on to discuss other ways of accomplishing that perverse goal with Python, not discussing anything to do with __slots__.

The third paragraph is more wishful thinking. Together it is mostly off-the-mark content that the answerer didn"t even author and contributes to ammunition for critics of the site.

Memory usage evidence

Create some normal objects and slotted objects:

>>> class Foo(object): pass
>>> class Bar(object): __slots__ = ()

Instantiate a million of them:

>>> foos = [Foo() for f in xrange(1000000)]
>>> bars = [Bar() for b in xrange(1000000)]

Inspect with guppy.hpy().heap():

>>> guppy.hpy().heap()
Partition of a set of 2028259 objects. Total size = 99763360 bytes.
 Index  Count   %     Size   % Cumulative  % Kind (class / dict of class)
     0 1000000  49 64000000  64  64000000  64 __main__.Foo
     1     169   0 16281480  16  80281480  80 list
     2 1000000  49 16000000  16  96281480  97 __main__.Bar
     3   12284   1   987472   1  97268952  97 str
...

Access the regular objects and their __dict__ and inspect again:

>>> for f in foos:
...     f.__dict__
>>> guppy.hpy().heap()
Partition of a set of 3028258 objects. Total size = 379763480 bytes.
 Index  Count   %      Size    % Cumulative  % Kind (class / dict of class)
     0 1000000  33 280000000  74 280000000  74 dict of __main__.Foo
     1 1000000  33  64000000  17 344000000  91 __main__.Foo
     2     169   0  16281480   4 360281480  95 list
     3 1000000  33  16000000   4 376281480  99 __main__.Bar
     4   12284   0    987472   0 377268952  99 str
...

This is consistent with the history of Python, from Unifying types and classes in Python 2.2

If you subclass a built-in type, extra space is automatically added to the instances to accomodate __dict__ and __weakrefs__. (The __dict__ is not initialized until you use it though, so you shouldn"t worry about the space occupied by an empty dictionary for each instance you create.) If you don"t need this extra space, you can add the phrase "__slots__ = []" to your class.

Answer #7

os.listdir() - list in the current directory

With listdir in os module you get the files and the folders in the current dir

 import os
 arr = os.listdir()
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

Looking in a directory

arr = os.listdir("c:\files")

glob from glob

with glob you can specify a type of file to list like this

import glob

txtfiles = []
for file in glob.glob("*.txt"):
    txtfiles.append(file)

glob in a list comprehension

mylist = [f for f in glob.glob("*.txt")]

get the full path of only files in the current directory

import os
from os import listdir
from os.path import isfile, join

cwd = os.getcwd()
onlyfiles = [os.path.join(cwd, f) for f in os.listdir(cwd) if 
os.path.isfile(os.path.join(cwd, f))]
print(onlyfiles) 

["G:\getfilesname\getfilesname.py", "G:\getfilesname\example.txt"]

Getting the full path name with os.path.abspath

You get the full path in return

 import os
 files_path = [os.path.abspath(x) for x in os.listdir()]
 print(files_path)
 
 ["F:\documentiapplications.txt", "F:\documenticollections.txt"]

Walk: going through sub directories

os.walk returns the root, the directories list and the files list, that is why I unpacked them in r, d, f in the for loop; it, then, looks for other files and directories in the subfolders of the root and so on until there are no subfolders.

import os

# Getting the current work directory (cwd)
thisdir = os.getcwd()

# r=root, d=directories, f = files
for r, d, f in os.walk(thisdir):
    for file in f:
        if file.endswith(".docx"):
            print(os.path.join(r, file))

os.listdir(): get files in the current directory (Python 2)

In Python 2, if you want the list of the files in the current directory, you have to give the argument as "." or os.getcwd() in the os.listdir method.

 import os
 arr = os.listdir(".")
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

To go up in the directory tree

# Method 1
x = os.listdir("..")

# Method 2
x= os.listdir("/")

Get files: os.listdir() in a particular directory (Python 2 and 3)

 import os
 arr = os.listdir("F:\python")
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

Get files of a particular subdirectory with os.listdir()

import os

x = os.listdir("./content")

os.walk(".") - current directory

 import os
 arr = next(os.walk("."))[2]
 print(arr)
 
 >>> ["5bs_Turismo1.pdf", "5bs_Turismo1.pptx", "esperienza.txt"]

next(os.walk(".")) and os.path.join("dir", "file")

 import os
 arr = []
 for d,r,f in next(os.walk("F:\_python")):
     for file in f:
         arr.append(os.path.join(r,file))

 for f in arr:
     print(files)

>>> F:\_python\dict_class.py
>>> F:\_python\programmi.txt

next(os.walk("F:\") - get the full path - list comprehension

 [os.path.join(r,file) for r,d,f in next(os.walk("F:\_python")) for file in f]
 
 >>> ["F:\_python\dict_class.py", "F:\_python\programmi.txt"]

os.walk - get full path - all files in sub dirs**

x = [os.path.join(r,file) for r,d,f in os.walk("F:\_python") for file in f]
print(x)

>>> ["F:\_python\dict.py", "F:\_python\progr.txt", "F:\_python\readl.py"]

os.listdir() - get only txt files

 arr_txt = [x for x in os.listdir() if x.endswith(".txt")]
 print(arr_txt)
 
 >>> ["work.txt", "3ebooks.txt"]

Using glob to get the full path of the files

If I should need the absolute path of the files:

from path import path
from glob import glob
x = [path(f).abspath() for f in glob("F:\*.txt")]
for f in x:
    print(f)

>>> F:acquistionline.txt
>>> F:acquisti_2018.txt
>>> F:ootstrap_jquery_ecc.txt

Using os.path.isfile to avoid directories in the list

import os.path
listOfFiles = [f for f in os.listdir() if os.path.isfile(f)]
print(listOfFiles)

>>> ["a simple game.py", "data.txt", "decorator.py"]

Using pathlib from Python 3.4

import pathlib

flist = []
for p in pathlib.Path(".").iterdir():
    if p.is_file():
        print(p)
        flist.append(p)

 >>> error.PNG
 >>> exemaker.bat
 >>> guiprova.mp3
 >>> setup.py
 >>> speak_gui2.py
 >>> thumb.PNG

With list comprehension:

flist = [p for p in pathlib.Path(".").iterdir() if p.is_file()]

Alternatively, use pathlib.Path() instead of pathlib.Path(".")

Use glob method in pathlib.Path()

import pathlib

py = pathlib.Path().glob("*.py")
for file in py:
    print(file)

>>> stack_overflow_list.py
>>> stack_overflow_list_tkinter.py

Get all and only files with os.walk

import os
x = [i[2] for i in os.walk(".")]
y=[]
for t in x:
    for f in t:
        y.append(f)
print(y)

>>> ["append_to_list.py", "data.txt", "data1.txt", "data2.txt", "data_180617", "os_walk.py", "READ2.py", "read_data.py", "somma_defaltdic.py", "substitute_words.py", "sum_data.py", "data.txt", "data1.txt", "data_180617"]

Get only files with next and walk in a directory

 import os
 x = next(os.walk("F://python"))[2]
 print(x)
 
 >>> ["calculator.bat","calculator.py"]

Get only directories with next and walk in a directory

 import os
 next(os.walk("F://python"))[1] # for the current dir use (".")
 
 >>> ["python3","others"]

Get all the subdir names with walk

for r,d,f in os.walk("F:\_python"):
    for dirs in d:
        print(dirs)

>>> .vscode
>>> pyexcel
>>> pyschool.py
>>> subtitles
>>> _metaprogramming
>>> .ipynb_checkpoints

os.scandir() from Python 3.5 and greater

import os
x = [f.name for f in os.scandir() if f.is_file()]
print(x)

>>> ["calculator.bat","calculator.py"]

# Another example with scandir (a little variation from docs.python.org)
# This one is more efficient than os.listdir.
# In this case, it shows the files only in the current directory
# where the script is executed.

import os
with os.scandir() as i:
    for entry in i:
        if entry.is_file():
            print(entry.name)

>>> ebookmaker.py
>>> error.PNG
>>> exemaker.bat
>>> guiprova.mp3
>>> setup.py
>>> speakgui4.py
>>> speak_gui2.py
>>> speak_gui3.py
>>> thumb.PNG

Examples:

Ex. 1: How many files are there in the subdirectories?

In this example, we look for the number of files that are included in all the directory and its subdirectories.

import os

def count(dir, counter=0):
    "returns number of files in dir and subdirs"
    for pack in os.walk(dir):
        for f in pack[2]:
            counter += 1
    return dir + " : " + str(counter) + "files"

print(count("F:\python"))

>>> "F:\python" : 12057 files"

Ex.2: How to copy all files from a directory to another?

A script to make order in your computer finding all files of a type (default: pptx) and copying them in a new folder.

import os
import shutil
from path import path

destination = "F:\file_copied"
# os.makedirs(destination)

def copyfile(dir, filetype="pptx", counter=0):
    "Searches for pptx (or other - pptx is the default) files and copies them"
    for pack in os.walk(dir):
        for f in pack[2]:
            if f.endswith(filetype):
                fullpath = pack[0] + "\" + f
                print(fullpath)
                shutil.copy(fullpath, destination)
                counter += 1
    if counter > 0:
        print("-" * 30)
        print("	==> Found in: `" + dir + "` : " + str(counter) + " files
")

for dir in os.listdir():
    "searches for folders that starts with `_`"
    if dir[0] == "_":
        # copyfile(dir, filetype="pdf")
        copyfile(dir, filetype="txt")


>>> _compiti18Compito Contabilità 1conti.txt
>>> _compiti18Compito Contabilità 1modula4.txt
>>> _compiti18Compito Contabilità 1moduloa4.txt
>>> ------------------------
>>> ==> Found in: `_compiti18` : 3 files

Ex. 3: How to get all the files in a txt file

In case you want to create a txt file with all the file names:

import os
mylist = ""
with open("filelist.txt", "w", encoding="utf-8") as file:
    for eachfile in os.listdir():
        mylist += eachfile + "
"
    file.write(mylist)

Example: txt with all the files of an hard drive

"""
We are going to save a txt file with all the files in your directory.
We will use the function walk()
"""

import os

# see all the methods of os
# print(*dir(os), sep=", ")
listafile = []
percorso = []
with open("lista_file.txt", "w", encoding="utf-8") as testo:
    for root, dirs, files in os.walk("D:\"):
        for file in files:
            listafile.append(file)
            percorso.append(root + "\" + file)
            testo.write(file + "
")
listafile.sort()
print("N. of files", len(listafile))
with open("lista_file_ordinata.txt", "w", encoding="utf-8") as testo_ordinato:
    for file in listafile:
        testo_ordinato.write(file + "
")

with open("percorso.txt", "w", encoding="utf-8") as file_percorso:
    for file in percorso:
        file_percorso.write(file + "
")

os.system("lista_file.txt")
os.system("lista_file_ordinata.txt")
os.system("percorso.txt")

All the file of C: in one text file

This is a shorter version of the previous code. Change the folder where to start finding the files if you need to start from another position. This code generate a 50 mb on text file on my computer with something less then 500.000 lines with files with the complete path.

import os

with open("file.txt", "w", encoding="utf-8") as filewrite:
    for r, d, f in os.walk("C:\"):
        for file in f:
            filewrite.write(f"{r + file}
")

How to write a file with all paths in a folder of a type

With this function you can create a txt file that will have the name of a type of file that you look for (ex. pngfile.txt) with all the full path of all the files of that type. It can be useful sometimes, I think.

import os

def searchfiles(extension=".ttf", folder="H:\"):
    "Create a txt file with all the file of a type"
    with open(extension[1:] + "file.txt", "w", encoding="utf-8") as filewrite:
        for r, d, f in os.walk(folder):
            for file in f:
                if file.endswith(extension):
                    filewrite.write(f"{r + file}
")

# looking for png file (fonts) in the hard disk H:
searchfiles(".png", "H:\")

>>> H:4bs_18Dolphins5.png
>>> H:4bs_18Dolphins6.png
>>> H:4bs_18Dolphins7.png
>>> H:5_18marketing htmlassetsimageslogo2.png
>>> H:7z001.png
>>> H:7z002.png

(New) Find all files and open them with tkinter GUI

I just wanted to add in this 2019 a little app to search for all files in a dir and be able to open them by doubleclicking on the name of the file in the list. enter image description here

import tkinter as tk
import os

def searchfiles(extension=".txt", folder="H:\"):
    "insert all files in the listbox"
    for r, d, f in os.walk(folder):
        for file in f:
            if file.endswith(extension):
                lb.insert(0, r + "\" + file)

def open_file():
    os.startfile(lb.get(lb.curselection()[0]))

root = tk.Tk()
root.geometry("400x400")
bt = tk.Button(root, text="Search", command=lambda:searchfiles(".png", "H:\"))
bt.pack()
lb = tk.Listbox(root)
lb.pack(fill="both", expand=1)
lb.bind("<Double-Button>", lambda x: open_file())
root.mainloop()

Answer #8

This is the behaviour to adopt when the referenced object is deleted. It is not specific to Django; this is an SQL standard. Although Django has its own implementation on top of SQL. (1)

There are seven possible actions to take when such event occurs:

  • CASCADE: When the referenced object is deleted, also delete the objects that have references to it (when you remove a blog post for instance, you might want to delete comments as well). SQL equivalent: CASCADE.
  • PROTECT: Forbid the deletion of the referenced object. To delete it you will have to delete all objects that reference it manually. SQL equivalent: RESTRICT.
  • RESTRICT: (introduced in Django 3.1) Similar behavior as PROTECT that matches SQL"s RESTRICT more accurately. (See django documentation example)
  • SET_NULL: Set the reference to NULL (requires the field to be nullable). For instance, when you delete a User, you might want to keep the comments he posted on blog posts, but say it was posted by an anonymous (or deleted) user. SQL equivalent: SET NULL.
  • SET_DEFAULT: Set the default value. SQL equivalent: SET DEFAULT.
  • SET(...): Set a given value. This one is not part of the SQL standard and is entirely handled by Django.
  • DO_NOTHING: Probably a very bad idea since this would create integrity issues in your database (referencing an object that actually doesn"t exist). SQL equivalent: NO ACTION. (2)

Source: Django documentation

See also the documentation of PostgreSQL for instance.

In most cases, CASCADE is the expected behaviour, but for every ForeignKey, you should always ask yourself what is the expected behaviour in this situation. PROTECT and SET_NULL are often useful. Setting CASCADE where it should not, can potentially delete all of your database in cascade, by simply deleting a single user.


Additional note to clarify cascade direction

It"s funny to notice that the direction of the CASCADE action is not clear to many people. Actually, it"s funny to notice that only the CASCADE action is not clear. I understand the cascade behavior might be confusing, however you must think that it is the same direction as any other action. Thus, if you feel that CASCADE direction is not clear to you, it actually means that on_delete behavior is not clear to you.

In your database, a foreign key is basically represented by an integer field which value is the primary key of the foreign object. Let"s say you have an entry comment_A, which has a foreign key to an entry article_B. If you delete the entry comment_A, everything is fine. article_B used to live without comment_A and don"t bother if it"s deleted. However, if you delete article_B, then comment_A panics! It never lived without article_B and needs it, and it"s part of its attributes (article=article_B, but what is article_B???). This is where on_delete steps in, to determine how to resolve this integrity error, either by saying:

  • "No! Please! Don"t! I can"t live without you!" (which is said PROTECT or RESTRICT in Django/SQL)
  • "All right, if I"m not yours, then I"m nobody"s" (which is said SET_NULL)
  • "Good bye world, I can"t live without article_B" and commit suicide (this is the CASCADE behavior).
  • "It"s OK, I"ve got spare lover, and I"ll reference article_C from now" (SET_DEFAULT, or even SET(...)).
  • "I can"t face reality, and I"ll keep calling your name even if that"s the only thing left to me!" (DO_NOTHING)

I hope it makes cascade direction clearer. :)


Footnotes

(1) Django has its own implementation on top of SQL. And, as mentioned by @JoeMjr2 in the comments below, Django will not create the SQL constraints. If you want the constraints to be ensured by your database (for instance, if your database is used by another application, or if you hang in the database console from time to time), you might want to set the related constraints manually yourself. There is an open ticket to add support for database-level on delete constrains in Django.

(2) Actually, there is one case where DO_NOTHING can be useful: If you want to skip Django"s implementation and implement the constraint yourself at the database-level.

Answer #9

Label vs. Location

The main distinction between the two methods is:

  • loc gets rows (and/or columns) with particular labels.

  • iloc gets rows (and/or columns) at integer locations.

To demonstrate, consider a series s of characters with a non-monotonic integer index:

>>> s = pd.Series(list("abcdef"), index=[49, 48, 47, 0, 1, 2]) 
49    a
48    b
47    c
0     d
1     e
2     f

>>> s.loc[0]    # value at index label 0
"d"

>>> s.iloc[0]   # value at index location 0
"a"

>>> s.loc[0:1]  # rows at index labels between 0 and 1 (inclusive)
0    d
1    e

>>> s.iloc[0:1] # rows at index location between 0 and 1 (exclusive)
49    a

Here are some of the differences/similarities between s.loc and s.iloc when passed various objects:

<object> description s.loc[<object>] s.iloc[<object>]
0 single item Value at index label 0 (the string "d") Value at index location 0 (the string "a")
0:1 slice Two rows (labels 0 and 1) One row (first row at location 0)
1:47 slice with out-of-bounds end Zero rows (empty Series) Five rows (location 1 onwards)
1:47:-1 slice with negative step three rows (labels 1 back to 47) Zero rows (empty Series)
[2, 0] integer list Two rows with given labels Two rows with given locations
s > "e" Bool series (indicating which values have the property) One row (containing "f") NotImplementedError
(s>"e").values Bool array One row (containing "f") Same as loc
999 int object not in index KeyError IndexError (out of bounds)
-1 int object not in index KeyError Returns last value in s
lambda x: x.index[3] callable applied to series (here returning 3rd item in index) s.loc[s.index[3]] s.iloc[s.index[3]]

loc"s label-querying capabilities extend well-beyond integer indexes and it"s worth highlighting a couple of additional examples.

Here"s a Series where the index contains string objects:

>>> s2 = pd.Series(s.index, index=s.values)
>>> s2
a    49
b    48
c    47
d     0
e     1
f     2

Since loc is label-based, it can fetch the first value in the Series using s2.loc["a"]. It can also slice with non-integer objects:

>>> s2.loc["c":"e"]  # all rows lying between "c" and "e" (inclusive)
c    47
d     0
e     1

For DateTime indexes, we don"t need to pass the exact date/time to fetch by label. For example:

>>> s3 = pd.Series(list("abcde"), pd.date_range("now", periods=5, freq="M")) 
>>> s3
2021-01-31 16:41:31.879768    a
2021-02-28 16:41:31.879768    b
2021-03-31 16:41:31.879768    c
2021-04-30 16:41:31.879768    d
2021-05-31 16:41:31.879768    e

Then to fetch the row(s) for March/April 2021 we only need:

>>> s3.loc["2021-03":"2021-04"]
2021-03-31 17:04:30.742316    c
2021-04-30 17:04:30.742316    d

Rows and Columns

loc and iloc work the same way with DataFrames as they do with Series. It"s useful to note that both methods can address columns and rows together.

When given a tuple, the first element is used to index the rows and, if it exists, the second element is used to index the columns.

Consider the DataFrame defined below:

>>> import numpy as np 
>>> df = pd.DataFrame(np.arange(25).reshape(5, 5),  
                      index=list("abcde"), 
                      columns=["x","y","z", 8, 9])
>>> df
    x   y   z   8   9
a   0   1   2   3   4
b   5   6   7   8   9
c  10  11  12  13  14
d  15  16  17  18  19
e  20  21  22  23  24

Then for example:

>>> df.loc["c": , :"z"]  # rows "c" and onwards AND columns up to "z"
    x   y   z
c  10  11  12
d  15  16  17
e  20  21  22

>>> df.iloc[:, 3]        # all rows, but only the column at index location 3
a     3
b     8
c    13
d    18
e    23

Sometimes we want to mix label and positional indexing methods for the rows and columns, somehow combining the capabilities of loc and iloc.

For example, consider the following DataFrame. How best to slice the rows up to and including "c" and take the first four columns?

>>> import numpy as np 
>>> df = pd.DataFrame(np.arange(25).reshape(5, 5),  
                      index=list("abcde"), 
                      columns=["x","y","z", 8, 9])
>>> df
    x   y   z   8   9
a   0   1   2   3   4
b   5   6   7   8   9
c  10  11  12  13  14
d  15  16  17  18  19
e  20  21  22  23  24

We can achieve this result using iloc and the help of another method:

>>> df.iloc[:df.index.get_loc("c") + 1, :4]
    x   y   z   8
a   0   1   2   3
b   5   6   7   8
c  10  11  12  13

get_loc() is an index method meaning "get the position of the label in this index". Note that since slicing with iloc is exclusive of its endpoint, we must add 1 to this value if we want row "c" as well.

Answer #10

Quick Answer:

The simplest way to get row counts per group is by calling .size(), which returns a Series:

df.groupby(["col1","col2"]).size()


Usually you want this result as a DataFrame (instead of a Series) so you can do:

df.groupby(["col1", "col2"]).size().reset_index(name="counts")


If you want to find out how to calculate the row counts and other statistics for each group continue reading below.


Detailed example:

Consider the following example dataframe:

In [2]: df
Out[2]: 
  col1 col2  col3  col4  col5  col6
0    A    B  0.20 -0.61 -0.49  1.49
1    A    B -1.53 -1.01 -0.39  1.82
2    A    B -0.44  0.27  0.72  0.11
3    A    B  0.28 -1.32  0.38  0.18
4    C    D  0.12  0.59  0.81  0.66
5    C    D -0.13 -1.65 -1.64  0.50
6    C    D -1.42 -0.11 -0.18 -0.44
7    E    F -0.00  1.42 -0.26  1.17
8    E    F  0.91 -0.47  1.35 -0.34
9    G    H  1.48 -0.63 -1.14  0.17

First let"s use .size() to get the row counts:

In [3]: df.groupby(["col1", "col2"]).size()
Out[3]: 
col1  col2
A     B       4
C     D       3
E     F       2
G     H       1
dtype: int64

Then let"s use .size().reset_index(name="counts") to get the row counts:

In [4]: df.groupby(["col1", "col2"]).size().reset_index(name="counts")
Out[4]: 
  col1 col2  counts
0    A    B       4
1    C    D       3
2    E    F       2
3    G    H       1


Including results for more statistics

When you want to calculate statistics on grouped data, it usually looks like this:

In [5]: (df
   ...: .groupby(["col1", "col2"])
   ...: .agg({
   ...:     "col3": ["mean", "count"], 
   ...:     "col4": ["median", "min", "count"]
   ...: }))
Out[5]: 
            col4                  col3      
          median   min count      mean count
col1 col2                                   
A    B    -0.810 -1.32     4 -0.372500     4
C    D    -0.110 -1.65     3 -0.476667     3
E    F     0.475 -0.47     2  0.455000     2
G    H    -0.630 -0.63     1  1.480000     1

The result above is a little annoying to deal with because of the nested column labels, and also because row counts are on a per column basis.

To gain more control over the output I usually split the statistics into individual aggregations that I then combine using join. It looks like this:

In [6]: gb = df.groupby(["col1", "col2"])
   ...: counts = gb.size().to_frame(name="counts")
   ...: (counts
   ...:  .join(gb.agg({"col3": "mean"}).rename(columns={"col3": "col3_mean"}))
   ...:  .join(gb.agg({"col4": "median"}).rename(columns={"col4": "col4_median"}))
   ...:  .join(gb.agg({"col4": "min"}).rename(columns={"col4": "col4_min"}))
   ...:  .reset_index()
   ...: )
   ...: 
Out[6]: 
  col1 col2  counts  col3_mean  col4_median  col4_min
0    A    B       4  -0.372500       -0.810     -1.32
1    C    D       3  -0.476667       -0.110     -1.65
2    E    F       2   0.455000        0.475     -0.47
3    G    H       1   1.480000       -0.630     -0.63



Footnotes

The code used to generate the test data is shown below:

In [1]: import numpy as np
   ...: import pandas as pd 
   ...: 
   ...: keys = np.array([
   ...:         ["A", "B"],
   ...:         ["A", "B"],
   ...:         ["A", "B"],
   ...:         ["A", "B"],
   ...:         ["C", "D"],
   ...:         ["C", "D"],
   ...:         ["C", "D"],
   ...:         ["E", "F"],
   ...:         ["E", "F"],
   ...:         ["G", "H"] 
   ...:         ])
   ...: 
   ...: df = pd.DataFrame(
   ...:     np.hstack([keys,np.random.randn(10,4).round(2)]), 
   ...:     columns = ["col1", "col2", "col3", "col4", "col5", "col6"]
   ...: )
   ...: 
   ...: df[["col3", "col4", "col5", "col6"]] = 
   ...:     df[["col3", "col4", "col5", "col6"]].astype(float)
   ...: 


Disclaimer:

If some of the columns that you are aggregating have null values, then you really want to be looking at the group row counts as an independent aggregation for each column. Otherwise you may be misled as to how many records are actually being used to calculate things like the mean because pandas will drop NaN entries in the mean calculation without telling you about it.

Tutorials