numpy.rint () in Python

NumPy | Python Methods and Functions

numpy.rint (x [, out]) = ufunc & # 39; rint & # 39;): this math function rounds array elements to the nearest integer.

Parameters:
array: [array_like] Input array.

Return: An array with all array elements being rounded off, having same type and shape as input.

Code # 1: Work

Output:

 Input array: [0.5, 1.5, 2.5, 3.5, 4.5, 10.1] Rounded values: [0.2.2 . 4. 4. 10.] Input array: [0.53, 1.54, 0.71] Rounded values: [1. 2. 1.] Input array: [0.5538, 1.33354, 0.71445] Rounded values: [1. 1. 1.] 

Code # 2: Work

# Python program explaining
# rint () function

import numpy as np

  

in_array = [. 5 , 1.5  , 2.5 , 3.5 , 4.5 , 10.1 ]

print ( "Input array:" , in_array)

 

rintoff_values ​​ = np.rint (in_array)

print ( "Rounded values:" , rintoff_values)

 

  

in_array = [ . 53 , 1.54 ,. 71 ]

print ( " Input array: " , in_array)

  

rintoff_values ​​ = np.rint (in_array)

print ( "Rounded values:" , rintoff_values)

 

in_array = [. 5538 , 1.33354 ,. 71445 ]

print ( "Input array:" , in_array)

 

rintoff_values ​​ = np.rint (in_array)

print ( "Rounded values:" , rintoff_values)

# Python program explaining
# rint () function

import numpy as np

 

in_array = [ 1 , 4 , 7 , 9 , 12 ]

print ( "Input array:" , in_array)

 

rintoff_values ​​ = np.rint (in_array)

print ( "Rounded values:" , rintoff_values )

 

in_array = [ 133 , 344 , 437 , 449 , 12 ]

print ( "Input array:" , in_array)

 

rintoff_values ​​ = np.rint (in_array)

print ( " Rounded values ​​upto 2: " , rintoff_values)

 

in_array = [ 133 , 344 , 437 , 449 , 12 ]

print ( "Input array:" , in_array)

  

rintoff_values ​​ = np.rint ( in_array)

print ( "Rounded values upto 3: " , rintoff_values)

Output :

 Input array: [1, 4, 7, 9, 12] Rounded values: [1. 4. 7. 9. 12.] Input array: [133, 344, 437, 449, 12] Rounded values ​​upto 2: [133. 344. 437. 449. 12.] Input array: [133, 344 , 437, 449, 12] Rounded values ​​upto 3: [133. 344. 437. 449. 12.] 

Links: https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.rint.html# numpy.rint
,





Get Solution for free from DataCamp guru