numpy.polyint () in Python

NumPy | Python Methods and Functions

m antiderivatives & # 39; P & # 39; polynomial & # 39; p & # 39; satisfies

Parameters:
p: [array_like or poly1D] polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True then array values ​​are the roots of the polynomial equation. For example, poly1d (3, 2, 6) = 3x 2 + 2x + 6
m: [int, optional] Order of anti-derivative. Default is 1.

Return: Anti-Derivative of the polynomial.

Code # 1:

# Python code explaining
# numpy.polyint ()

 
# importing libraries

import numpy as np 

  
# Plotting a polynomial

p1 = np.poly1d ([ 1 , 2 ]) 

p2 = np.poly1d ([ 4 , 9 , 5 , 4 ]) 

 

print ( "P1:" , p1) 

print ( "p2:" , p2) 

 
# Solve for x = 2

print ( "p1 at x = 2:" , p1 ( 2 )) 

print ( " p2 at x = 2: " , p2 ( 2 )) 

 

a = np.polyint (p1, 1

b = np.polyint (p2, 1

print ( " Using polyint "

print ( "p1 anti-derivative of order = 1: " , a) 

print ( "p2 anti-derivative of order = 1:" , b) 

 

a = np.polyint (p1, 2

b = np.polyint (p2, 2

print ( "Using polyint"

print ( "p1 anti-derivative of order = 2:" , a) 

print ( "p2 anti-derivative of order = 2: " , b) 

Output:

 P1: 1 x + 2 p2: 3 2 4 x + 9 x + 5 x + 4 p1 at x = 2: 4 p2 at x = 2: 82 Using polyint p1 anti-derivative of order = 1: 2 0.5 x + 2 x p2 anti-derivative of order = 1: 4 3 2 1 x + 3 x + 2.5 x + 4 x 

Code # 2:

# Python code, explaining
# numpy.polyint ()

 
# importing libraries

import numpy as np 

 
# Building a polynomial

p1 = np.poly1d ([ 1 , 2 ]) 

p2 = np.poly1d ([ 4 , 9 , < / code> 5 , 4 ]) 

 

a = np.polyint (p1, 2

b = np.polyint (p2, 2

 

print ( "Using polyint"

print ( " p1 anti-derivative of order = 2: " , a) 

print ( "p2 anti-derivative of order = 2:" , b) 

Output:

 Using polyint p1 anti-derivative of order = 2: 3 2 0.1667 x + 1 x p2 anti-derivative of order = 2: 5 4 3 2 0.2 x + 0.75 x + 0.8333 x + 2 x 




Get Solution for free from DataCamp guru