# numpy.ndarray.flat () in Python

| |

Parameters :

`  index:  [tuple (int)] index of the values ​​to iterate `

Return:

` 1-D iteration of array `

Code 1: Working with a 2D array

 ` # Python program illustrating ` ` # works with ndarray.flat () `   ` import ` ` numpy as geek `   ` # Working on 1D iteration of a 2D array ` ` array ` ` = ` ` geek.arange (` ` 15 ` `). reshape (` ` 3 ` `, ` ` 5 ` `) ` ` print ` ` (` `" 2D array: "` `, array) ` ` `  ` # Using flat (): 1D range iterator ` ` print ` ` (` ` "Using Array:" ` `, array.flat [` ` 2 ` `: ` ` 6 ` `]) `   ` # Using flat () to print 1D of a presented array ` ` print ` ` (` ` "1D representation of array: -"" ` `, array .flat [` ` 0 ` `: ` ` 15 ` `]) `

Output:

` 2D array : [[0 1 2 3 4] [5 6 7 8 9] [10 11 12 13 14]] Using Array: [2 3 4 5] 1D representation of array: -" [0 1 2 ..., 12 13 14] `

Code 2: changing array values ​​

 ` # Python program illustrating ` ` # works with ndarray.flat () `   ` import ` ` numpy as geek ` ` `  ` # Working on 1D iteration of a 2D array ` ` array ` ` = ` ` geek.arange (` ` 15 ` `). reshape (` ` 3 ` `, ` ` 5 ` `) ` ` print ` ` (` `" 2D array: "` `, array) `   ` # All elements are set to 1 ` ` array.flat ` ` = ` ` 1 ` ` print ` ` (` ` "All Values ​​set to 1:" ` `, array) `   ` array.flat [` ` 3 ` `: ` ` 6 ` `] ` ` = ` ` 8 ` ` array. flat [` ` 8 ` `: ` ` 10 ` `] ` ` = ` ` 9 ` ` print ` ` (` ` "Changing values ​​in a range:" ` , array)

Output:

` 2D array: [[0 1 2 3 4] [5 6 7 8 9] [10 11 12 13 14]] All Values ​​set to 1: [[1 1 1 1 1] [1 1 1 1 1] [1 1 1 1 1]] Changing values ​​in a range: [[1 1 1 8 8] [8 1 1 9 9] [1 1 1 1 1]] `

What is numpy.flatiter really?
The smoothing iterator returns x.flat for any array x. It allows you to iterate (in the main row) over N-dimensional arrays, either in a for loop or by calling its next method.

Code 3: numpy.flatitter () role

 ` # Python program illustrating ` ` # works with ndarray.flat () `   ` import ` ` numpy as geek `   ` # Working on 1D iteration of a 2D array ` ` array ` ` = ` ` geek.arange (` ` 15 ` `). reshape (` ` 3 ` `, ` ` 5 ` `) ` ` print ` ` (` ` "2D array:" ` `, array) `   ` print ` ` (` ` "ID array:" ` `, array.flat [` ` 0 ` `: ` ` 15 ` `]) ` ` `  ` print ` ` (` ` "Type of array , flat (): "` `, ` ` type ` ` (array.flat)) `   ` for ` ` i ` ` in ` ` array.flat: ` ` ` ` print ` ` (i, end ` < code class = "keyword"> = ` ’’ ` `) `

Output:

` 2D array: [[0 1 2 3 4] [5 6 7 8 9] [10 11 12 13 14]] ID array: [0 1 2 ..., 12 13 14] Type of array, flat (): 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 `

Notes:
These codes will not work for online IDs. Please run them on your systems to see how they work.

## Shop Learn programming in R: courses

\$ Best Python online courses for 2022

\$ Best laptop for Fortnite

\$ Best laptop for Excel

\$ Best laptop for Solidworks

\$ Best laptop for Roblox

\$ Best computer for crypto mining

\$ Best laptop for Sims 4

\$

Latest questions

NUMPYNUMPY

psycopg2: insert multiple rows with one query

NUMPYNUMPY

How to convert Nonetype to int or string?

NUMPYNUMPY

How to specify multiple return types using type-hints

NUMPYNUMPY

Javascript Error: IPython is not defined in JupyterLab

## Wiki

Python OpenCV | cv2.putText () method

numpy.arctan2 () in Python

Python | os.path.realpath () method

Python OpenCV | cv2.circle () method

Python OpenCV cv2.cvtColor () method

Python - Move item to the end of the list

time.perf_counter () function in Python

Check if one list is a subset of another in Python

Python os.path.join () method