# numpy.nanpercentile () in Python

| | | | | | | | |

`numpy.nanpercentile()` used to calculate the nth percentile of data (array elements) along the specified axis, ang ignores nan values.

Syntax: numpy.nanpercentile (arr, q, axis = None, out = None)
Parameters:
arr: input array.
q: percentile value.
axis: axis along which we want to calculate the percentile value.Otherwise, it will consider arr to be flattened (works on all the axis). axis = 0
means along the column and axis = 1 means working along the row.
out: Different array in which we want to place the result. The array must have same dimensions as expected output.

Return: Percentile of the array (a scalar value if axis is none) or array with percentiles of values ‚Äã‚Äãalong specified axis.

Code # 1: Work

 ` # Python program illustrating ` ` # numpy.nanpercentile () method ` ` import ` ` numpy as np ` ` # 1D array ` ` arr ` ` = ` ` [` ` 20 ` `, ` ` 2 ` `, ` ` 7 ` `, np.nan, ` ` 34 ` `] ` ` print ` ` (` `" arr: "` `, arr) ` ` print ` ` (` `" 30th percentile of arr: "` `, ` ` np.percentile (arr, ` ` 50 ` `)) ` ` print ` ` (` ` "25th percentile of arr:" ` `, ` ` np.percentile (arr, ` ` 25 ` `)) ` ` print ` ` (` ` "75th percentile of arr:" ` `, ` ` np.percentile (arr, ` ` 75 ` `)) ` ` print ` ` (` ` "30th percentile of arr:" ` `, ` ` np.nanpercentile (arr, ` ` 50 ` `)) ` ` print ` ` (` ` "25th percentile of arr:" ` `, ` ` np.nanpercentile (arr, ` ` 25 ` `)) ` ` print ` ` (` ` "75th percentile of arr:" ` `, ` ` n p.nanpercentile (arr, ` ` 75 ` `)) `

Output:

` arr: [20, 2, 7, nan, 34] 30th percentile of arr: nan 25th percentile of arr: nan 75th percentile of arr: nan 30th percentile of arr: 13.5 25th percentile of arr: 5.75 75th percentile of arr: 23.5 `

Code # 2:

` `

` # Python program illustrating # numpy.nanpercentile () method import numpy as np # 2D array arr = [[ 14 , np.nan, 12 , 33 , 44 ], [ 15 , np.nan, 27 , 8 , 19 ], [ 23 , 2 , np.nan, 1 , 4 ,]] print ( "arr:" , arr) # Flattened array percentile print ( "50th Percentile of arr, axis = None:" , np.percentile (arr, 50 )) print ( " 50th Percentile of arr, axis = None: " , np.nanpercentile (arr, 50 )) print ( "0th Percentile of arr, axis = None:" , np.nanpercentile (arr, 0 )) # Axis percentile = 0 print ( "50th Percentile of arr, axis = 0:" , np.nanpercentile (arr, 50 , axis = 0 )) print ( "0th Percentile of arr, axis = 0:" , np.nanpercentile (arr, 0 , axis = 0 )) # Axis percentile = 1 print ( "50th Percentile of arr, axis = 1:" , np.nanpercentile (arr, 50 , axis = 1 ) ) print ( "0th Percentile of arr, axis = 1: " , np.nanpercentile (arr, 0 , axis = 1 )) print ( "0th Percentile of arr, axis = 1:" , np.nanpercentile (arr, 50 , axis = 1 , keepdims = True )) print ( "0th Percentile of arr, axis = 1:" , np.nanpercentile (arr, 0 , axis = 1 , keepdims = True )) `

Output:

` arr: [[14, nan, 12, 33, 44], [15, nan, 27, 8, 19], [23, 2, nan, 1, 4]] 50th Percentile of arr , axis = None: nan 50th Percentile of arr, axis = None: 14.5 0th Percentile of arr, axis = None: 1.0 50th Percentile of arr, axis = 0: [15. 2. 19.5 8. 19.] 0th Percentile of arr, axis = 0: [14. 2. 12. 1. 4.] 50th Percentile of arr, axis = 1: [23.5 17. 3.] 0th Percentile of arr, axis = 1: [12. 8. 1.] 0th Percentile of arr, axis = 1: [[23.5] [17. ] [3.]] 0th Percentile of arr, axis = 1: [[12.] [8.] [1.]] `

Code # 3:

 ` # Python program illustrating ` ` # numpy.nanpercentile () method ` ` import ` ` numpy as np ` ` # 2D array ` ` arr ` ` = ` ` [[` ` 14 ` `, np.nan, ` ` 12 ` `, ` ` 33 ` `, ` ` 44 ` `], ` ` [` ` 15 ` `, np.nan, ` ` 27 ` `, ` ` 8 ` `, ` ` 19 ` `], ` ` [` ` 23 ` `, np.nan, np.nan, ` ` 1 ` `, ` ` 4 ` `,]] ` ` print ` ` (` ` "arr:" ` `, arr ) ` ` # Axis percentile = 1 ` ` print ` ` (` ` "50th Percentile of arr, axis = 1:" ` `, ` ` np.nanpercentile (arr, ` ` 50 ` `, axis ` ` = ` ` 1 ` `)) ` ` print ` ` (` `" 50th Percentile of arr, axis = 0: "` `, ` ` ` ` np.nanpercentile (arr, ` ` 50 ` `, axis ` ` = ` ` 0 ` `)) `

Output:

` arr: [[14, nan, 12, 33, 44] , [15, nan, 27, 8, 19], [23, nan, nan, 1, 4]] 50th Percentile of arr, axis = 1: [23.5 17. 4.] 50th Percentile of arr, axis = 0: [fifteen. nan 19.5 8. 19.] RuntimeWarning: All-NaN slice encountered overwrite_input, interpolation) `

## Shop Best Python online courses for 2022

\$FREE Best laptop for Excel

\$ Best laptop for Solidworks

\$399+ Best laptop for Roblox

\$399+ Best computer for crypto mining

\$499+ Best laptop for Sims 4

\$ Best laptop for Zoom

\$499 Best laptop for Minecraft

\$590

Latest questions

PythonStackOverflow

Common xlabel/ylabel for matplotlib subplots

PythonStackOverflow

Check if one list is a subset of another in Python

PythonStackOverflow

How to specify multiple return types using type-hints

PythonStackOverflow

Printing words vertically in Python

PythonStackOverflow

Python Extract words from a given string

PythonStackOverflow

Why do I get "Pickle - EOFError: Ran out of input" reading an empty file?

PythonStackOverflow

Python os.path.join () method

PythonStackOverflow

Flake8: Ignore specific warning for entire file

## Wiki

Python | How to copy data from one Excel sheet to another

Common xlabel/ylabel for matplotlib subplots

Check if one list is a subset of another in Python

How to specify multiple return types using type-hints

Printing words vertically in Python

Python Extract words from a given string

Cyclic redundancy check in Python

Finding mean, median, mode in Python without libraries