  # numpy.minimum () in Python

Arrays | NumPy | Python Methods and Functions

It compares the two arrays and returns a new array containing the element-wise minimums. If one of the compared elements is NaN, then that element is returned. If both elements are NaN, then the first is returned.

Syntax: numpy.minimum (arr1, arr2, /, out = None, *, where = True, casting = `same_kind`, order = `K`, dtype = None, ufunc `minimum`)

Parameters:
arr1: [ array_like] Input array.
arr2: [array_like] Input array.
out: [ndarray, optional] A location into which the result is stored .
- & gt; If provided, it must have a shape that the inputs broadcast to.
- & gt; If not provided or None, a freshly-allocated array is returned.
** kwargs: allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function.
where: [array_like, optional] True value means to calculate the universal functions (ufunc) at that position, False value means to leave the value in the output alone.

Return: [ndarray or scalar] Result.
The minimum of arr1 and arr2, element-wise. This is a scalar if both arr1 and arr2 are scalars.

Code # 1: Work

` `

` # Python program explaining # minimum () function    import numpy as geek in_num1 = 10 in_num2 = 21   print ( "Input number1:" , in_num1) print ( "Input number2:" , in_num2)     out_num = geek.minimum (in_num1, in_num2)  print ( "minimum of 10 and 21:" , out_num)  `

` `

Output:

` Input number1: 10 Input number2: 21 minimum of 10 and 21: 10 `

Code # 2:

 ` # Python program explaining ` ` # minimum () function ` ` `  ` import ` ` numpy as geek `   ` in_arr1 ` ` = ` ` [` ` 2 ` `, ` ` 8 ` `, ` ` 125 ` `] ` ` in_arr2 ` ` = ` ` [` ` 3 ` `, ` ` 3 ` `, ` ` 15 ` `] `   ` print ` ` (` ` "Input array1:" ` `, in_arr1) ` ` print ` ` (` `" Input array2: "` `, in_arr2) ` ` `  ` out_arr ` ` = ` ` geek.mi nimum (in_arr1, in_arr2) ` ` print ` ` (` ` "Output array after selecting minimum:" ` `, out_arr) `

Output:

` Input array1: [2, 8, 125] Input array2: [3, 3, 15] Output array after selecting minimum: [2 3 15] `

Code # 3:

` `

 ` # Python program explaining ` ` # minimum () function `   ` import ` ` numpy as geek `   ` in_arr1 ` ` = ` ` [geek.nan, ` ` 0 ` `, geek.nan ] ` ` in_arr2 ` ` = ` ` [geek.nan , geek.nan, ` ` 0 ` `] ` ` `  ` print ` ` (` ` "Input array1: "` `, in_arr1) ` ` print ` ` (` ` "Input array2:" ` `, in_arr2) ` ` `  ` out_arr ` ` = ` ` geek.minimum ( in_arr1, in_arr2) ` ` print ` ` (` ` " Output array after selecting minimum: "` `, out_arr) `
` `

` `

Output:

` Input array1: [nan , 0, nan] Input array2: [nan, nan, 0] Output array after selecting minimum: [nan nan nan] `