Numpy MaskedArray.swapaxes () Function | python

NumPy | Python Methods and Functions

numpy.MaskedArray.swapaxes() is used to return a masked array view with interchangeable axes 1 and 2.

Syntax: numpy.ma.swapaxes (axis1, axis2)

Parameters:
axis1: [int] First axis.
axis2: [int] Second axis.

Return: [swapped_array] Resultant array.

Code # 1:

# Python program explaining
# numpy.MaskedArray.swapaxes () method

 
# import numy as geek
# and numpy.ma module as ma

import numpy as geek 

import numpy.ma as ma 

  
# create input array

in_arr = geek.array ([[ 1 , 2 ], [ 3 , - 1 ], [ 5 , - 3 ]])

print ( "Input array:" , in_arr) 

 
# We are now creating a masked array.
# invalidating the entry.

mask_arr = ma.masked_array (in_arr, mask = [[[ 1 , 0 ], [ 0 , 1 ], [ 0 , 0 ]]) 

print ( "Masked array:" , mask_arr) 

 
# applying the MaskedArray.swapaxes methods
# into the masked array

out_arr = < code class = "plain"> mask_arr.swapaxes ( 0 , 1

print ( "Output swapped masked array:" , out_arr) 

Output :

 Input array: [[1 2] [3 -1] [5 -3]] Masked array: [ [- 2] [3 -] [5 -3]] Output swapped masked array: [[- 3 5] [2 - -3]] 

Code # 2:

# Python program explaining
# numpy. MaskedArray.swapaxes () method

 
# import numy as a geek
# and the numpy.ma module as ma

import numpy as geek 

import numpy .ma as ma 

 
# create input array

in_arr = geek.array ([[[ 2e8 , 3e - 5 ]], [[[ - 45.0 , 2e5 ]]])

print ( "Input array:" , in_arr)

 
# Now we create a masked array.
# invalidating one record.

mask_arr = ma.masked_array (in_arr, mask = [[[[ 1 , 0 ]], [[ 0 , 0 ]]]) 

print ( "3D Masked array: " , mask_arr) 

  
# applying the MaskedArray.swapaxes methods
# into the masked array

out_arr = mask_arr.swapaxes ( 0 , 2

print ( " Output swapped masked array: " , out_arr)

Output:

 Input array: [[[2.0e + 08 3.0e-05] ] [[-4.5e + 01 2.0e + 05]]] 3D Masked array: [[[- 3e-05]] [[-45.0 200000.0]]] Output swapped masked array: [[[- -45.0] ] [[3e-05 200000.0]]] 




Get Solution for free from DataCamp guru