Numpy MaskedArray.ravel () Function | python

numpy.MaskedArray.ravel() is used to return a one-dimensional version of a custom mask array as a view.

Syntax : numpy.ma.ravel (self, order = 'C')

Parameters:
order : ['C', 'F', 'A', 'K', optional] By default, 'C' index order is used.
- & gt; The elements of a are read using this index order.
- & gt; 'C' means to index the elements in C-like order, with the last axis index changing fastest, back to the first axis index changing slowest.
- & gt; 'F' means to index the elements in Fortran-like index order, with the first index changing fastest, and the last index changing slowest.
- & gt; 'A' means to read the elements in Fortran-like index order if m is Fortran contiguous in memory, C-like order otherwise.
- & gt; 'K' means to read the elements in the order they occur in memory, except for reversing the data when strides are negative.

Return: [MaskedArray] Flattened 1D masked array.

Code # 1:

# Python program explaining
# numpy.MaskedArray.ravel () method

 
# import numy as geek
# and numpy.ma module as ma

import numpy as geek 

import numpy.ma as ma 

  
# create an input array

in_arr = geek.array ([[ 1 , 2 ], [ 3 , - 1 ]]) 

print ( "Input array:" , in_arr) 

 
# Now we create a masked array.
# invalidating two entries.

mask_arr = ma.masked_array (in_arr, mask = [[ 0 , 1 ], [ 1 , 0 ]]) 

print ( "Masked array:" , mask_arr) 

 
# using MaskedArray.ravel methods to mask the array

out_arr = mask_arr.ravel () 

print ( "1D view of masked array:" , out_arr) 

Output:

 Input array: [[1 2] [3 -1]] Masked array: [[1 -] [- -1]] 1D view of masked array: [1 - - -1] 

Code # 2:

# Python program explaining
# numpy.MaskedArray.ravel () method

  
# import numy as geek
# and numpy.ma module as ma

import numpy as geek 

import numpy.ma as ma 

  
# create input array

in_arr = geek.array ([[[ 2e8 , 3e - 5 ]], [[ - 45.0 , 2e5 ]]]) 

print ( "Input array:" , in_arr)

 
# We are now creating a masked array.
# invalidating one entry.

mask_arr = ma.masked_array (in_arr, mask = [[[ 1 , 0 ]], [[ 0 , 0 ]]]) 

print ( " 3D Masked array: " , mask_arr) 

 
# using MaskedArray.ravel methods to mask the array

out_arr = mask_arr.ravel () 

print ( "1D view of masked array:" , out_arr) 

Output:

 Input array: [[[2.0e + 08 3.0e-05]] [[- 4.5e + 01 2.0e + 05]]] 3D Masked array: [[[- 3e-05]] [[-45.0 200000.0]]] 1D view of masked array: [- 3e-05 -45.0 200000.0] 




Get Solution for free from DataCamp guru