Numpy MaskedArray.atleast_3d () Function | python

numpy.MaskedArray.atleast_3d() is used to transform input data into masked arrays with at least three dimensions. numpy.MaskedArray.atleast_3d() , 1D and 2D arrays are converted to 3D arrays, while larger input data is preserved.

Syntax: numpy.ma.atleast_3d(*arys)

Parameters:
arys: [array_like] One or more input arrays.

Return: [ndarray] An array, or list of arrays, each with arr.ndim & gt; = 3

Code # 1:

Output :

 1st Input array: [3 -1 5 -3] 2nd Input array: 2 3rd Input array: [[1 2 ] [3 -1] [5 -3]] 1st Masked array: [- -1 - -3] 2nd Masked array: 2 3rd Masked array: [[- 2] [3 -] [5 -3 ]] Output masked array: [masked_array (data = [[-, -1, -, -3]], mask = [[True, False, True, False]], fill_value = 999999), masked_array (data = [[2]], mask = [[False]], fill_value = 999999), masked_array (data = [[-, 2], [3, -], [5, -3]], mask = [[ True, False], [False, True], [False, False]], fill_value = 999999)] 

Code # 2:

# Python program explaining
# numpy.MaskedArray.atleast_3d () method

  
# import numy as geek
# and numpy.ma module as ma

import numpy as geek 

import numpy.ma as ma 

 
# create input arrays

in_arr1 = geek.array ([ 3 , - 1 , 5 , - 3 ])

print ( "1st Input array:" , in_arr1)

  

in_arr2 = geek .array ( 2  )

print ( "2nd Input array : " , in_arr2)

  

in_arr3 = geek.array ([[ 1 , 2 ], [ 3 , - 1 ], [ 5 , - 3 ]])

print ( "3rd Input array:" , in_arr3) 

 
# Now we create a mask an arrayed array.
# invalidating the entry.

mask_arr1 = ma.masked_array (in_arr1, mask = [ 1 , 0 , 1 , 0 ]) 

print ( " 1st Masked array: " , mask_arr1)

  

mask_arr2 = ma.masked_array (in_arr2, mask = 0

print ( " 2nd Masked array: " , mask_arr2)

 

mask_arr3 = ma.masked_array (in_arr3, mask = [[ 1 , 0 ], [ 0 , 1 ], [ 0 , 0 ]]) 

print ( "3rd Masked array:" , mask_arr3)

 
# applying MaskedArray.atleast_3d methods
# to the masked array

out_arr = ma.atleast_2d (mask_arr1, mask_arr2, mask_arr3) 

print ( "Output masked array:" , out_arr) 

# Python program explaining
# numpy.MaskedArray.atleast_3d () method

  
# import numy like a geek
# and the numpy.ma module like ma

import numpy as geek 

import numpy.ma as ma 

 
# create input array

in_arr = geek.array ([[[ 2e8 , 3e - 5 ]], [[ - 45.0 , 2e5 ]]])

print ( " Input array: " , in_arr)

 
# Now we create a masked array.
# making one entry invalid.

mask_arr = ma.masked_array (in_arr, mask = [[[ 1 , 0 ]], [[ 0 , 0 ]]]) 

print ( " 3D Masked array: "  , mask_arr) 

 
# applying MaskedArray.atleast_3d methods
# to the masked array

out_arr = ma.atleast_3d (mask_arr) 

print ( "Output masked array:" , out_arr)

Output:

 Input array: [[[2.0e + 08 3.0e-05]] [[-4.5e +01 2.0e + 05]]] 3D Masked array: [[[- 3e-05]] [[-45.0 200000.0]]] Output masked array: [[[- 3e-05]] [[-45.0 200000.0 ]]] 




Get Solution for free from DataCamp guru