numpy.divide () in Python

Counters | NumPy | Python Methods and Functions

Parameters:

arr1: [array_like] Input array or object which works as dividend.
arr2: [array_like] Input array or object which works as divisor.
out: [ndarray, optional] Output array with same dimensions as Input array,
placed with result.
** kwargs: allows you to pass keyword variable length of argument to a function.
It is used when we want to handle named argument in a function.
where: [array_like, optional] True value means to calculate the universal
functions (ufunc) at that position, False value means to leave the
value in the output alone.

Return:

 An array with  arr1 / arr2  (element-wise) as elements of output array. 

Code 1: Divide arr1 into arr2 elements

# Python program explaining
Function # divide ()

import numpy as np

 
# input_array

arr1 = [ 2 , 27 , 2 , 21 , 23 ]

arr2 = [ 2 3 , 4 , 5 , 6 ]

print ( " arr1 : " , arr1)

print ( "arr2 :" , arr2)

 
# output_array

out = np.divide (arr1, arr2)

print ( "Output array:" , out)

Output:

 arr1: [2, 27, 2 , 21, 23] ar r2: [2, 3, 4, 5, 6] Output array: [1. 9. 0.5 4.2 3.83333333] 

Code 2: arr1 elements separated by divisor

Output:

 arr1: [2, 27, 2, 21, 23] Output array: [0.66666667 9. 0.66666667 7. 7.66666667] 

Code 3: warning if arr2 has element = 0

# Python program explaining
Function # divide ()

import numpy as np

 
# input_array

arr1 = [ 2 , 27 , 2 , 21 , 23 ]

divisor = 3

print ( " arr1 : " , arr1)

  
# output_array

out = np.divide (arr1, divisor)

print ( "Output array:" , out)

# Python program explaining
Function # divide ( )

import numpy as np

 
# input_array

arr1 = [ 2 , 27 , 2 , 21 , 23 ]

arr2 = [ 2 , 3 , 0 , 5 , 6 ]

print   ( "arr1 :" , arr1)

print ( "arr2 :" , arr2)

 
# output_array

out = np.divide (arr1, arr2)

print ( "Output array:" , out)

Output:

 arr1: [2, 27, 2, 21, 23] arr2: [2, 3, 0, 5, 6] Output array: [1. 9. inf 4.2 3.83333333] RuntimeWarning: divide by zero encountered in true_divide out = np.power (arr1, arr2) 

Links:
ht tps: //docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.divide.html
,





Get Solution for free from DataCamp guru