Change language

# numpy.divide () in Python

| |

Parameters:

arr1: [array_like] Input array or object which works as dividend.
arr2: [array_like] Input array or object which works as divisor.
out: [ndarray, optional] Output array with same dimensions as Input array,
placed with result.
** kwargs: allows you to pass keyword variable length of argument to a function.
It is used when we want to handle named argument in a function.
where: [array_like, optional] True value means to calculate the universal
functions (ufunc) at that position, False value means to leave the
value in the output alone.

Return:

` An array with  arr1 / arr2  (element-wise) as elements of output array. `

Code 1: Divide arr1 into arr2 elements

 ` # Python program explaining ` ` Function # divide () ` ` import ` ` numpy as np `   ` # input_array ` ` arr1 ` ` = ` ` [` ` 2 ` `, ` ` 27 ` `, ` ` 2 ` `, ` ` 21 ` `, ` ` 23 ` `] ` ` arr2 ` ` = ` ` [` ` 2 ` `, ` ` 3 ` `, ` ` 4 ` `, ` ` 5 ` `, ` ` 6 ` `] ` ` print ` ` (` `" arr1 : "` `, arr1) ` ` print ` ` (` ` "arr2 :" ` `, arr2) `   ` # output_array ` ` out ` ` = ` ` np.divide (arr1, arr2) ` ` print ` ` (` ` "Output array:" ` `, out) `

Output:

` arr1: [2, 27, 2 , 21, 23] ar r2: [2, 3, 4, 5, 6] Output array: [1. 9. 0.5 4.2 3.83333333] `

Code 2: arr1 elements separated by divisor

Output:

` arr1: [2, 27, 2, 21, 23] Output array: [0.66666667 9. 0.66666667 7. 7.66666667] `

Code 3: warning if arr2 has element = 0

 ` # Python program explaining ` ` Function # divide () ` ` import ` ` numpy as np `   ` # input_array ` ` arr1 ` ` = ` ` [` ` 2 ` `, ` ` 27 ` `, ` ` 2 ` `, ` ` 21 ` `, ` ` 23 ` `] ` ` divisor ` ` = ` 3 ` print ` ` (` `" arr1 : "` `, arr1) ` ` `  ` # output_array ` ` out ` ` = ` ` np.divide (arr1, divisor) ` ` print ` ` (` ` "Output array:" ` `, out) `
 ` # Python program explaining ` ` Function # divide ( ) ` ` import ` ` numpy as np `   ` # input_array ` ` arr1 ` ` = ` ` [` ` 2 ` `, ` ` 27 ` `, ` ` 2 ` `, ` ` 21 ` `, ` ` 23 ` `] ` ` arr2 ` ` = ` ` [` ` 2 ` `, ` ` 3 ` `, ` ` 0 ` `, ` ` 5 ` `, ` ` 6 ` `] ` ` print ` ` (` ` "arr1 :" ` `, arr1) ` ` print ` ` (` ` "arr2 :" ` `, arr2) `   ` # output_array ` ` out ` ` = ` ` np.divide (arr1, arr2) ` ` print ` ` (` ` "Output array:" ` `, out) `

Output:

` arr1: [2, 27, 2, 21, 23] arr2: [2, 3, 0, 5, 6] Output array: [1. 9. inf 4.2 3.83333333] RuntimeWarning: divide by zero encountered in true_divide out = np.power (arr1, arr2) `

## Shop

Learn programming in R: courses

\$

Best Python online courses for 2022

\$

Best laptop for Fortnite

\$

Best laptop for Excel

\$

Best laptop for Solidworks

\$

Best laptop for Roblox

\$

Best computer for crypto mining

\$

Best laptop for Sims 4

\$

Latest questions

NUMPYNUMPY

Common xlabel/ylabel for matplotlib subplots

NUMPYNUMPY

How to specify multiple return types using type-hints

NUMPYNUMPY

Why do I get "Pickle - EOFError: Ran out of input" reading an empty file?

NUMPYNUMPY

Flake8: Ignore specific warning for entire file

NUMPYNUMPY

glob exclude pattern

NUMPYNUMPY

How to avoid HTTP error 429 (Too Many Requests) python

NUMPYNUMPY

Python CSV error: line contains NULL byte

NUMPYNUMPY

csv.Error: iterator should return strings, not bytes

## Wiki

Python | How to copy data from one Excel sheet to another

Common xlabel/ylabel for matplotlib subplots

Check if one list is a subset of another in Python

How to specify multiple return types using type-hints

Printing words vertically in Python

Python Extract words from a given string

Cyclic redundancy check in Python

Finding mean, median, mode in Python without libraries