Change language

# numpy.diag_indices () in Python

| |

Parameters :

`  n:  size of array, for which indices of diag elements are required along each dimension  n_dim:  [int, optional] number of dimensions. `

Return:

` Indices (as tuples) to access diagonal elements. `

Code 1:

 ` # Python program illustrating ` ` # work diag_indices () `   ` import ` ` numpy as geek `   ` # Creates a 5 X 5 array and returns indices ` ` # main diagonal elements ` ` d ` ` = ` ` geek.diag_indices (` ` 5 ` `) ` ` print ` ` (` ` "Indices of diagnol elements as tuple:" ` `) ` ` print ` ` (d, "" ) ``   array = geek.arange ( 16 ). reshape ( 4 , 4 ) print ( "Initial array:" , array)   # Here we can manipulate diagonal elements # by accessing the diagonal elements d = geek.diag_indices ( 4 ) array [d] = 25 print ( "New array:" , array) `

Output:

` Indices of diagnol elements as tuple: (array ([0, 1, 2, 3, 4]), array ([0, 1, 2, 3, 4])) Initial array: [[0 1 2 3] [4 5 6 7] [8 9 10 11] [12 13 14 15 ]] New array: [[25 1 2 3] [4 25 6 7] [8 9 25 11] [12 13 14 25]] `

Code 2: 2D array manipulation

 ` # Python program illustrating ` ` # diag_indices () work `   ` import ` ` numpy as geek `   ` # Control 2D array development ` ` d ` ` = ` ` geek .diag_indices (` ` 3 ` `, ` ` 2 ` `) `   ` array ` ` = ` ` geek.arange (` ` 12 ` `) .reshape (` ` 4 ` `, ` ` 3 ` `) `   ` array [d] ` ` = ` ` 111 ` ` print ` ` (` ` "Manipulated array:" ` `, array) `

Output:

` Manipulated array: [[ 111 1 2] [3 111 5] [6 7 111] [9 10 11]] `

Code 3: Manipulating a 3D Array

 ` # Python program illustrating ` ` # diag_indices () work ` ` `  ` import ` ` numpy as geek `   ` # Setting diagonal indices ` ` d ` ` = ` ` geek.diag_indices (` ` 1 ` `, ` ` 2 ` `) ` ` print ` ` (` ` "Diag indices:" ` `, d) ` ` `  ` # Create a 3D array with all ` ` array ` ` = ` ` geek.ones ((` ` 2 ` `, ` ` 2 ` `, ` ` 2 ` `), dtype ` ` = ` ` geek. ` ` int ` `) ` ` print ` ` (` ` "Initial array:" ` `, array) `   ` # 3D array management ` ` array [d] ` ` = ` ` 0 ` ` print ` ` (` ` "New array:" ` `, array) `` `

Output:

` Diag indices: (array ([0]), array ([0])) Initial array: [[[1 1] [1 1]] [[1 1] [1 1]]] New array: [[ [0 0] [1 1]] [[1 1] [1 1]]] `

Notes:
These codes will not work for online IDs. Please run them on your systems to see how they work.

## Shop

Learn programming in R: courses

\$

Best Python online courses for 2022

\$

Best laptop for Fortnite

\$

Best laptop for Excel

\$

Best laptop for Solidworks

\$

Best laptop for Roblox

\$

Best computer for crypto mining

\$

Best laptop for Sims 4

\$

Latest questions

NUMPYNUMPY

Common xlabel/ylabel for matplotlib subplots

NUMPYNUMPY

How to specify multiple return types using type-hints

NUMPYNUMPY

Why do I get "Pickle - EOFError: Ran out of input" reading an empty file?

NUMPYNUMPY

Flake8: Ignore specific warning for entire file

NUMPYNUMPY

glob exclude pattern

NUMPYNUMPY

How to avoid HTTP error 429 (Too Many Requests) python

NUMPYNUMPY

Python CSV error: line contains NULL byte

NUMPYNUMPY

csv.Error: iterator should return strings, not bytes

## Wiki

Python | How to copy data from one Excel sheet to another

Common xlabel/ylabel for matplotlib subplots

Check if one list is a subset of another in Python

How to specify multiple return types using type-hints

Printing words vertically in Python

Python Extract words from a given string

Cyclic redundancy check in Python

Finding mean, median, mode in Python without libraries