Use Npm In Javascript

| |

👻 See our latest reviews to choose the best laptop for Machine Learning and Deep learning tasks!

The npm init command in JSON language creates a package.json file for the frontend of your project. A package.json file is a file that contains information about the packages and dependencies of the project. It also contains metadata for the project such as version number, author and description.

Using the npm commands is done through the command line tool, and init is just one of many commands npm responds to. In this introduction, we’ll learn what npm is, what a package.json file is, and what the npm init command does. By the end of this guide, you will have a clearer idea of ‚Äã‚Äãhow to use the npm init command.

What is npm?

Created as a package manager and installer, JSON . Structuring the package file in this way makes it easier for developers to read and makes it easier for computers to analyze the information.

An example package.json file might look like this:

Here we can see that only the name and version number are included in the list of prompts. These are the only ones required, but in general providing more information is considered best practice. So let’s see the list of dependencies that this particular project needs to run.

The dependency structure is a nested JSON object with key / value pairs. The keys are the name of the dependency and the values ‚Äã‚Äãpoint to their respective version numbers. In this example, there are several test packages and packages for React.

Since this interface is built with React, the project should know that it depends on React to function and that with the React packages listed in the package.json file, they can also be installed from the line of command.

Conclusion

Using npm init from the command line initializes the project’s package.json file. This file contains information about the project itself , such as name and version number. The project’s dependencies are listed.

Dependencies are the packages that the project needs to function properly. The list in the file package. json allows you to install them before building the project. package.json file generated by calling npm init must be written in JSON format.

My Knowing that you have an introduction to using npm init and what a package.json file is, try starting your next project using npm init.

👻 Read also: what is the best laptop for engineering students in 2022?

Use Npm In Javascript JavaScript: Questions

JSON datetime between Python and JavaScript

4 answers

kevin By kevin

I want to send a datetime.datetime object in serialized form from Python using JSON and de-serialize in JavaScript using JSON. What is the best way to do this?

403

Answer #1

You can add the "default" parameter to json.dumps to handle this:

date_handler = lambda obj: (
    obj.isoformat()
    if isinstance(obj, (datetime.datetime, datetime.date))
    else None
)
json.dumps(datetime.datetime.now(), default=date_handler)
""2010-04-20T20:08:21.634121""

Which is ISO 8601 format.

A more comprehensive default handler function:

def handler(obj):
    if hasattr(obj, "isoformat"):
        return obj.isoformat()
    elif isinstance(obj, ...):
        return ...
    else:
        raise TypeError, "Object of type %s with value of %s is not JSON serializable" % (type(obj), repr(obj))

Update: Added output of type as well as value.
Update: Also handle date

Use Npm In Javascript JavaScript: Questions

What blocks Ruby, Python to get Javascript V8 speed?

4 answers

Are there any Ruby / Python features that are blocking implementation of optimizations (e.g. inline caching) V8 engine has?

Python is co-developed by Google guys so it shouldn"t be blocked by software patents.

Or this is rather matter of resources put into the V8 project by Google.

260

Answer #1

What blocks Ruby, Python to get Javascript V8 speed?

Nothing.

Well, okay: money. (And time, people, resources, but if you have money, you can buy those.)

V8 has a team of brilliant, highly-specialized, highly-experienced (and thus highly-paid) engineers working on it, that have decades of experience (I"m talking individually – collectively it"s more like centuries) in creating high-performance execution engines for dynamic OO languages. They are basically the same people who also created the Sun HotSpot JVM (among many others).

Lars Bak, the lead developer, has been literally working on VMs for 25 years (and all of those VMs have lead up to V8), which is basically his entire (professional) life. Some of the people writing Ruby VMs aren"t even 25 years old.

Are there any Ruby / Python features that are blocking implementation of optimizations (e.g. inline caching) V8 engine has?

Given that at least IronRuby, JRuby, MagLev, MacRuby and Rubinius have either monomorphic (IronRuby) or polymorphic inline caching, the answer is obviously no.

Modern Ruby implementations already do a great deal of optimizations. For example, for certain operations, Rubinius"s Hash class is faster than YARV"s. Now, this doesn"t sound terribly exciting until you realize that Rubinius"s Hash class is implemented in 100% pure Ruby, while YARV"s is implemented in 100% hand-optimized C.

So, at least in some cases, Rubinius can generate better code than GCC!

Or this is rather matter of resources put into the V8 project by Google.

Yes. Not just Google. The lineage of V8"s source code is 25 years old now. The people who are working on V8 also created the Self VM (to this day one of the fastest dynamic OO language execution engines ever created), the Animorphic Smalltalk VM (to this day one of the fastest Smalltalk execution engines ever created), the HotSpot JVM (the fastest JVM ever created, probably the fastest VM period) and OOVM (one of the most efficient Smalltalk VMs ever created).

In fact, Lars Bak, the lead developer of V8, worked on every single one of those, plus a few others.

Use Npm In Javascript JavaScript: Questions

Django Template Variables and Javascript

4 answers

When I render a page using the Django template renderer, I can pass in a dictionary variable containing various values to manipulate them in the page using {{ myVar }}.

Is there a way to access the same variable in Javascript (perhaps using the DOM, I don"t know how Django makes the variables accessible)? I want to be able to lookup details using an AJAX lookup based on the values contained in the variables passed in.

256

Answer #1

The {{variable}} is substituted directly into the HTML. Do a view source; it isn"t a "variable" or anything like it. It"s just rendered text.

Having said that, you can put this kind of substitution into your JavaScript.

<script type="text/javascript"> 
   var a = "{{someDjangoVariable}}";
</script>

This gives you "dynamic" javascript.

Is there a list of Pytz Timezones?

3 answers

I would like to know what are all the possible values for the timezone argument in the Python library pytz. How to do it?

834

Answer #1

You can list all the available timezones with pytz.all_timezones:

In [40]: import pytz
In [41]: pytz.all_timezones
Out[42]: 
["Africa/Abidjan",
 "Africa/Accra",
 "Africa/Addis_Ababa",
 ...]

There is also pytz.common_timezones:

In [45]: len(pytz.common_timezones)
Out[45]: 403

In [46]: len(pytz.all_timezones)
Out[46]: 563

Python strptime() and timezones?

3 answers

I have a CSV dumpfile from a Blackberry IPD backup, created using IPDDump. The date/time strings in here look something like this (where EST is an Australian time-zone):

Tue Jun 22 07:46:22 EST 2010

I need to be able to parse this date in Python. At first, I tried to use the strptime() function from datettime.

>>> datetime.datetime.strptime("Tue Jun 22 12:10:20 2010 EST", "%a %b %d %H:%M:%S %Y %Z")

However, for some reason, the datetime object that comes back doesn"t seem to have any tzinfo associated with it.

I did read on this page that apparently datetime.strptime silently discards tzinfo, however, I checked the documentation, and I can"t find anything to that effect documented here.

I have been able to get the date parsed using a third-party Python library, dateutil, however I"m still curious as to how I was using the in-built strptime() incorrectly? Is there any way to get strptime() to play nicely with timezones?

198

Answer #1

I recommend using python-dateutil. Its parser has been able to parse every date format I"ve thrown at it so far.

>>> from dateutil import parser
>>> parser.parse("Tue Jun 22 07:46:22 EST 2010")
datetime.datetime(2010, 6, 22, 7, 46, 22, tzinfo=tzlocal())
>>> parser.parse("Fri, 11 Nov 2011 03:18:09 -0400")
datetime.datetime(2011, 11, 11, 3, 18, 9, tzinfo=tzoffset(None, -14400))
>>> parser.parse("Sun")
datetime.datetime(2011, 12, 18, 0, 0)
>>> parser.parse("10-11-08")
datetime.datetime(2008, 10, 11, 0, 0)

and so on. No dealing with strptime() format nonsense... just throw a date at it and it Does The Right Thing.

Update: Oops. I missed in your original question that you mentioned that you used dateutil, sorry about that. But I hope this answer is still useful to other people who stumble across this question when they have date parsing questions and see the utility of that module.

Fitting empirical distribution to theoretical ones with Scipy (Python)?

3 answers

INTRODUCTION: I have a list of more than 30,000 integer values ranging from 0 to 47, inclusive, e.g.[0,0,0,0,..,1,1,1,1,...,2,2,2,2,...,47,47,47,...] sampled from some continuous distribution. The values in the list are not necessarily in order, but order doesn"t matter for this problem.

PROBLEM: Based on my distribution I would like to calculate p-value (the probability of seeing greater values) for any given value. For example, as you can see p-value for 0 would be approaching 1 and p-value for higher numbers would be tending to 0.

I don"t know if I am right, but to determine probabilities I think I need to fit my data to a theoretical distribution that is the most suitable to describe my data. I assume that some kind of goodness of fit test is needed to determine the best model.

Is there a way to implement such an analysis in Python (Scipy or Numpy)? Could you present any examples?

Thank you!

159

Answer #1

Distribution Fitting with Sum of Square Error (SSE)

This is an update and modification to Saullo"s answer, that uses the full list of the current scipy.stats distributions and returns the distribution with the least SSE between the distribution"s histogram and the data"s histogram.

Example Fitting

Using the El Niño dataset from statsmodels, the distributions are fit and error is determined. The distribution with the least error is returned.

All Distributions

All Fitted Distributions

Best Fit Distribution

Best Fit Distribution

Example Code

%matplotlib inline

import warnings
import numpy as np
import pandas as pd
import scipy.stats as st
import statsmodels.api as sm
from scipy.stats._continuous_distns import _distn_names
import matplotlib
import matplotlib.pyplot as plt

matplotlib.rcParams["figure.figsize"] = (16.0, 12.0)
matplotlib.style.use("ggplot")

# Create models from data
def best_fit_distribution(data, bins=200, ax=None):
    """Model data by finding best fit distribution to data"""
    # Get histogram of original data
    y, x = np.histogram(data, bins=bins, density=True)
    x = (x + np.roll(x, -1))[:-1] / 2.0

    # Best holders
    best_distributions = []

    # Estimate distribution parameters from data
    for ii, distribution in enumerate([d for d in _distn_names if not d in ["levy_stable", "studentized_range"]]):

        print("{:>3} / {:<3}: {}".format( ii+1, len(_distn_names), distribution ))

        distribution = getattr(st, distribution)

        # Try to fit the distribution
        try:
            # Ignore warnings from data that can"t be fit
            with warnings.catch_warnings():
                warnings.filterwarnings("ignore")
                
                # fit dist to data
                params = distribution.fit(data)

                # Separate parts of parameters
                arg = params[:-2]
                loc = params[-2]
                scale = params[-1]
                
                # Calculate fitted PDF and error with fit in distribution
                pdf = distribution.pdf(x, loc=loc, scale=scale, *arg)
                sse = np.sum(np.power(y - pdf, 2.0))
                
                # if axis pass in add to plot
                try:
                    if ax:
                        pd.Series(pdf, x).plot(ax=ax)
                    end
                except Exception:
                    pass

                # identify if this distribution is better
                best_distributions.append((distribution, params, sse))
        
        except Exception:
            pass

    
    return sorted(best_distributions, key=lambda x:x[2])

def make_pdf(dist, params, size=10000):
    """Generate distributions"s Probability Distribution Function """

    # Separate parts of parameters
    arg = params[:-2]
    loc = params[-2]
    scale = params[-1]

    # Get sane start and end points of distribution
    start = dist.ppf(0.01, *arg, loc=loc, scale=scale) if arg else dist.ppf(0.01, loc=loc, scale=scale)
    end = dist.ppf(0.99, *arg, loc=loc, scale=scale) if arg else dist.ppf(0.99, loc=loc, scale=scale)

    # Build PDF and turn into pandas Series
    x = np.linspace(start, end, size)
    y = dist.pdf(x, loc=loc, scale=scale, *arg)
    pdf = pd.Series(y, x)

    return pdf

# Load data from statsmodels datasets
data = pd.Series(sm.datasets.elnino.load_pandas().data.set_index("YEAR").values.ravel())

# Plot for comparison
plt.figure(figsize=(12,8))
ax = data.plot(kind="hist", bins=50, density=True, alpha=0.5, color=list(matplotlib.rcParams["axes.prop_cycle"])[1]["color"])

# Save plot limits
dataYLim = ax.get_ylim()

# Find best fit distribution
best_distibutions = best_fit_distribution(data, 200, ax)
best_dist = best_distibutions[0]

# Update plots
ax.set_ylim(dataYLim)
ax.set_title(u"El Niño sea temp.
 All Fitted Distributions")
ax.set_xlabel(u"Temp (°C)")
ax.set_ylabel("Frequency")

# Make PDF with best params 
pdf = make_pdf(best_dist[0], best_dist[1])

# Display
plt.figure(figsize=(12,8))
ax = pdf.plot(lw=2, label="PDF", legend=True)
data.plot(kind="hist", bins=50, density=True, alpha=0.5, label="Data", legend=True, ax=ax)

param_names = (best_dist[0].shapes + ", loc, scale").split(", ") if best_dist[0].shapes else ["loc", "scale"]
param_str = ", ".join(["{}={:0.2f}".format(k,v) for k,v in zip(param_names, best_dist[1])])
dist_str = "{}({})".format(best_dist[0].name, param_str)

ax.set_title(u"El Niño sea temp. with best fit distribution 
" + dist_str)
ax.set_xlabel(u"Temp. (°C)")
ax.set_ylabel("Frequency")

Shop

Learn programming in R: courses

$

Best Python online courses for 2022

$

Best laptop for Fortnite

$

Best laptop for Excel

$

Best laptop for Solidworks

$

Best laptop for Roblox

$

Best computer for crypto mining

$

Best laptop for Sims 4

$

Latest questions

NUMPYNUMPY

psycopg2: insert multiple rows with one query

12 answers

NUMPYNUMPY

How to convert Nonetype to int or string?

12 answers

NUMPYNUMPY

How to specify multiple return types using type-hints

12 answers

NUMPYNUMPY

Javascript Error: IPython is not defined in JupyterLab

12 answers

News


Wiki

Python OpenCV | cv2.putText () method

numpy.arctan2 () in Python

Python | os.path.realpath () method

Python OpenCV | cv2.circle () method

Python OpenCV cv2.cvtColor () method

Python - Move item to the end of the list

time.perf_counter () function in Python

Check if one list is a subset of another in Python

Python os.path.join () method