Change language

np.nanmax () in Python

|

numpy.nanmax() is used to return the maximum value of an array or along any particular mentioned axis of the array, ignoring any Nan value.

Syntax: numpy.nanmax (arr, axis = None, out = None, keepdims = no value)

Parameters:
arr: Input array.
axis: Axis along which we want the max value. Otherwise, it will consider arr to be flattened (works on all the axis) axis = 0 means along the column
and axis = 1 means working along the row.
out: Different array in which we want to place the result. The array must have same dimensions as expected output.
keepdims: If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original a.

Return: maximum array value (a scalar value if axis is none) or array with maximum value along specified axis .

Code # 1: Work

# Python program illustrating
# numpy.nanmax () method

 

import numpy as np

 
# 1D array

arr = [ 1 , 2 , 7 , 0 , np.nan]

print ( " arr: " , arr) 

print ( "max of arr:" , np .amax (arr))

 
# nanmax ignores NaN values.

print ( "nanmax of arr:" , np.nanmax (arr))

 

Output:

 arr: [1, 2, 7, 0, nan] max of arr: nan nanmax of arr: 7.0 

Code # 2:

import < code class = "plain"> numpy as np

 
# 2D array

arr = [[np.nan, 17 , 12 , 33 , 44 ], 

  [ 15 , 6 , 27 , 8 , 19 ]] 

print ( "arr:" , arr) 

  
# maximum smoothed array

print ( "max of arr, axis = None:" , np.nanmax (arr)) 

 
# maximum along the first axis
# axis 0 means vertical

print ( "max of arr, axis = 0:" , np.nanmax (arr, axis = 0 )) 

 
# maximum along the second axis
# axis 1 means horizontal

print ( "max of arr, axis = 1:"  , np.nanmax (arr, axis = 1 )) 

Output:

 arr: [[nan, 17, 12, 33, 44], [15, 6, 27, 8, 19]] max of arr, axis = None: 44.0 max of arr, axis = 0: [15. 17. 27. 33. 44.] max of arr, axis = 1: [44. 27.] 

Code # 3:

import numpy as np

  

arr1 = np.arange ( 5

print ( "Initial arr1:" , arr1)

 
# using the out parameter

np.nanmax (arr, axis = 0 , out = arr1)

 

print ( "Changed arr1 (having results):" , arr1) 

Output:

 Initial arr1: [0 1 2 3 4] Changed arr1 (having results): [15 17 27 33 44] 

Shop

Learn programming in R: courses

$

Best Python online courses for 2022

$

Best laptop for Fortnite

$

Best laptop for Excel

$

Best laptop for Solidworks

$

Best laptop for Roblox

$

Best computer for crypto mining

$

Best laptop for Sims 4

$

Latest questions

NUMPYNUMPY

psycopg2: insert multiple rows with one query

12 answers

NUMPYNUMPY

How to convert Nonetype to int or string?

12 answers

NUMPYNUMPY

How to specify multiple return types using type-hints

12 answers

NUMPYNUMPY

Javascript Error: IPython is not defined in JupyterLab

12 answers

News


Wiki

Python OpenCV | cv2.putText () method

numpy.arctan2 () in Python

Python | os.path.realpath () method

Python OpenCV | cv2.circle () method

Python OpenCV cv2.cvtColor () method

Python - Move item to the end of the list

time.perf_counter () function in Python

Check if one list is a subset of another in Python

Python os.path.join () method