Change language

# ML | Logistic regression using Python

User Database — This dataset contains information about users from a company database. Contains information about user ID, gender, age, estimated salary, purchase. We use this dataset to predict whether a user will purchase a new company product or not.

Data —  User_Data

Let’s create a logistic regression model that predicts whether a user will buy a product or not.

Input libraries

 ` import ` ` pandas as pd ` ` import ` ` numpy as np ` ` import ` ` matplotlib.pyplot as plt `

 ` dataset ` ` = ` ` pd.read_csv (` ` ’... User_Data.csv’ ` `) `

Now, to predict whether a user will purchase a product or not, we need to figure out the relationship between age and estimated salary. Here, user ID and gender are not important factors to figure this out.

 ` # input ` ` x ` ` = ` ` dataset.iloc [:, [` ` 2 ` `, ` ` 3 ` `]]. values ​​`   ` # exit ` ` y ` ` = ` ` dataset.iloc [:, ` ` 4 ` `]. values ​​`

Splitting the dataset for training and testing. 75% of the data is used to train the model, and 25% is — to test the performance of our model.

 ` from ` ` sklearn.cross_validation ` ` import ` ` train_test_split ` ` xtrain, xtest, ytrain, ytest ` ` = ` ` train_test_split (` ` x, y, test_size ` ` = ` ` 0.25 ` `, random_state ` ` = ` ` 0 ` `) `

Now it is very important to scale the features here because the age and estimated salary values ​​are in different ranges. If we are not scaling objects, then the Estimated Wages function will dominate the Age function when the model finds the nearest neighbor to the data point in the data space.

 ` from ` ` sklearn.preprocessing ` ` import ` ` StandardScaler ` ` sc_x ` ` = ` ` StandardScaler () ` ` xtrain ` ` = ` ` sc_x.fit_transform (xtrain) ` ` xtest ` ` = ` ` sc_x.transform (xtest) `   ` print ` ` (xtrain [` ` 0 ` `: 10 ,:]) `

Output:

` [[0.58164944 -0.88670699] [-0.60673761 1.46173768] [-0.01254409 -0.5677824] [-0.60673761 1.89663484] [1.37390747 -1.40858358] [1.47293972 0.99784738] [0.08648817 -0.79972756] [-0.01254409 -0.24885782] [-0.21060859 -0.5677824] [-0.21060859 -0.19087153p] Here `
the estimated wages are sacred, and now they are in the range from -1 to 1. Therefore, each feature will equally contribute to decision making, ie

Finally, we train our logistic regression model.

` `

` from sklearn.linear_model import LogisticRegression < code class = "plain"> classifier = LogisticRegression (random_state = 0 ) classifier.fit (xtrain, ytrain) `

After training the model, it’s time to use it to predict data testing.

 ` y_pred ` ` = ` ` classifier.predict (xtest) `

Let’s check the performance our model — Confusion Matrix

 ` from ` ` sklearn.metrics ` ` import ` ` confusion_matrix ` ` cm ` ` = ` ` confusion_matrix (ytest, y_pred) `   ` print ` ` (` `" Confusion Matrix: "` `, cm) `

Output:

` Confusion Matrix: [[65 3] [8 24]] `

Out of 100:
TruePostive + TrueNegative = 65 + 24
FalsePositive + FalseNegative = 3 + 8

Performance Indicator — precision

 ` from ` ` sklearn.metrics ` ` import ` ` accuracy_score ` ` print ` ` (` ` "Accuracy:" ` `, accuracy_score (ytest, y_pred)) `

Output:

` Accuracy: 0.89 `

Visualization of the performance of our model.

 ` from ` ` matplotlib.colors ` ` import ` ` ListedColormap ` ` X_set, y_set ` ` = ` ` xtest, ytest ` ` X1, X2 ` ` = ` ` np.meshgrid (np.arange (start ` ` = ` ` X_set [:, ` ` 0 ` `]. ` ` min ` ` () ` ` - ` ` 1 ` `, ` ` stop ` ` = ` ` X_set [:, ` ` 0 ` ` ]. ` ` max ` ` () ` ` + ` ` 1 ` `, step ` ` = ` ` 0.01 ` `), ` ` np.arange (start ` ` = ` ` X_set [:, ` ` 1 ` `]. ` ` min ` ` () ` ` - ` ` 1 ` `, ` ` stop ` ` = ` ` X_set [:, ` ` 1 ` `]. ` ` max ` ` () ` ` + ` ` 1 ` `, step ` ` = ` ` 0.01 ` `)) `   ` plt.contourf (X1, X2, classifier.predict (` ` ` ` np.array ([X1.ravel (), X2.ravel ()]). T) .reshape (` ` X1.shape), alpha ` ` = ` ` 0.75 ` `, cmap ` ` = ` ` ListedColormap ((` ` ’red’ ` `, ` `’ green’ ` `))) `   ` plt.xlim (X1. ` ` min ` ` (), X1. ` ` max ` ` ()) ` ` plt.ylim (X2. ` ` min ` ` (), X2. ` ` max ` ` ()) `   ` for ` ` i, j ` ` in ` ` enumerate ` ` (np.unique (y_set)): ` ` plt.scatte r (X_set [y_set ` ` = ` ` = ` ` j, ` ` 0 ` `], X_set [y_set ` ` = ` ` = ` ` j, ` ` 1 ` `], ` ` c ` ` = ` ` ListedColormap ((` ` ’red’ ` `, ` `’ green’ ` `)) (i), label ` ` = ` ` j) `   ` plt.title (` ` ’Classifier ( Test set) ’` `) ` ` plt.xlabel (` `’ Age’ ` `) ` ` plt.ylabel ( ’Estimated Salary’ ) `` plt.legend () plt.show () `

Output:

Analyzing performance metrics — accuracy and confusion matrix and graph, we can clearly say that our model is performing really well.

## Shop

Learn programming in R: courses

\$FREE

Best Python online courses for 2022

\$FREE

Best laptop for Fortnite

\$399+

Best laptop for Excel

\$

Best laptop for Solidworks

\$399+

Best laptop for Roblox

\$399+

Best computer for crypto mining

\$499+

Best laptop for Sims 4

\$

Latest questions

PythonStackOverflow

Common xlabel/ylabel for matplotlib subplots

PythonStackOverflow

Check if one list is a subset of another in Python

PythonStackOverflow

How to specify multiple return types using type-hints

PythonStackOverflow

Printing words vertically in Python

PythonStackOverflow

Python Extract words from a given string

PythonStackOverflow

Why do I get "Pickle - EOFError: Ran out of input" reading an empty file?

PythonStackOverflow

Python os.path.join () method

PythonStackOverflow

Flake8: Ignore specific warning for entire file

## Wiki

Python | How to copy data from one Excel sheet to another

Common xlabel/ylabel for matplotlib subplots

Check if one list is a subset of another in Python

How to specify multiple return types using type-hints

Printing words vertically in Python

Python Extract words from a given string

Cyclic redundancy check in Python

Finding mean, median, mode in Python without libraries