ML | Diagnosing Breast Cancer in Wisconsin Using Logistic Regression

diag | log | NumPy | Python Methods and Functions | sin

Logistic regression is used to predict whether a given patient has a malignant or benign tumor based on attributes in a given dataset.

Code: Load Libraries

# doing linear algebra

import numpy as np 

 
# data processing

import pandas as pd

 
# rendering

import matplotlib.pyplot as plt

Code: Load dataset

data = pd.read_csv ( ".. breast-cancer-wisconsin-data data.csv" )

 

print (data.head)

Output:

Code: Load dataset

data.info ()

Output:

 RangeIndex : 569 entries, 0 to 568 Data columns (total 33 columns): id 569 non-null int64 diagnosis 569 non-null object radius_mean 569 non-null float64 texture_mean 569 non-null float64 perimeter_mean 569 non-null float64 area_mean 569 non-null float64 smoothness_mean 569 non-null float64 compactness_mean 569 non-null float64 concavity_mean 569 non-nullmean concavity 569 non-nullmean points 569 non-nullmean conc9 -null float64 symmetry_mean 569 non-null float64 fractal_dimension_mean 569 non-null float64 radius_se 569 non-null float64 texture_se 569 non-null float64 perimeter_se 569 non-null float64 area_se 569 non-null float64 smoothness_se 569 non-nullse float non compactness-569 float64 concavity_se 569 non-null float64 concave points_se 569 non-null float64 symmetry_se 569 non-null float64 fractal_dimension_se 569 non-null float64 radius_worst 569 non-null float64 texture_worst 569 non-null float64 perimeter_worst 569_ non-null float64 perimeter_worst 569_ non-null-null area smoothness_worst 569 non-null float64 compactness_worst 569 non-null float64 concavity_worst 569 non-null float64 concave points_worst 5 69 non-null float64 symmetry_worst 569 non-null float64 fractal_dimension_worst 569 non-null float64 Unnamed: 32 0 non-null float64 dtypes: float64 (31), int64 (1), object (1) memory usage: 146.8+ KB  

Code: we are dropping columns — "Id" and "Unnamed: 32" as they play no role in forecasting.

data.drop ([ `Unnamed: 32` , ` id` ], axis = 1 )

data.diagnosis = [ 1 if each = = "M" else 0 for each in data.diagnosis]

Code: input and output

y = data.diagnosis.values ​​

x_data = data.drop ([ `diagnosis` ], axis = 1 )

Code: normalization

x = (x_data - np. min (x_data)) / (np. max (x_data) - np. min (x_data)). values ​​

Code: Separate data for training and testing.

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split (

x, y, test_size = 0.15 , random_state = 42 )

  

x_train = x_train.T

x_test = x_test.T

y_train = y_train.T

y_test = y_test.T

 

print ( "x train:" , x_train.shape)

print ( "x test:" , x_test.shape)

print ( " y train: " , y_train.shape)

print ( "y test:" , y_test.shape)

Code Weight and Grade

def initialize_weights_and_bias (dimension):

w = np.full ((dimension, 1 ), 0.01 )

  b = 0.0

return w, b

Code: sigmoidal function — calculates the z-value.

# z = np.dot (wT, x_train) + b

def sigmoid (z):

y_head = 1 / ( 1 + np.exp ( - z))

return y_head

Codex Forward and Backward Distribution

def forward_backward_propagation (w, b, x_train, y_train):

z = np.dot (wT, x_train) + b

y_head = sigmoid (z)

loss = - y_train * np.log (y_head) - ( 1 - y_train) * np.log ( 1 - y_head)

# x_train.shape [1] to scale

cost = ( np. sum (loss)) / x_train.shape [ 1

 

# backpropagation

derivative_weight = ( np.dot (x_train, (

(y_head - y_train) .T))) / x_train. shape [ 1

derivative_bias = np. sum (

y_head - y_train) / x_train.shape [ 1

gradients = { "derivative_weight" : derivative_weight,

"derivative_bias" : derivative_bias}

return cost, gradients

Code: update options

def update (w, b, x_train , y_train, learning_rate, number_of_iterarion):

cost_list = []

  cost_list2 = []

index = []

 

# Updating (learning) parameters is a number

  for i in range (number_of_iterarion):

# do forward and backward propagation and find cost and gradients

cost, gradients = forward_backward_propagation (w, b, x_train, y_train)

cost_list.append (cost)

 

# let`s update

w = w - learning_rate * gradients [ "derivative_weight" ]

b = b - learning_rate * gradients [ "derivative_bias" ]

if i % 10 = = 0 :

cost_list2.append (cost )

index.append (i)

  print ( "Cost after iteration% i:% f" % (i, cost))

  

# update (learn) the parameters of the weights and biases

parameters = { "weight" : w, "bias" : b}

plt.plot (index, cost_list2)

plt.xticks (index, rotation = `vertical` )

  plt.xlabel ( " Number of Iterarion " )

plt.ylabel ( "Cost" )

plt.show ()

return parameters, gradients, cost_list

Code: Predictions

def predict (w, b, x_test):

# x_test is an input for direct distribution

z = si gmoid (np.dot (wT, x_test) + b)

Y_prediction = np.zeros (( 1 , x_test.shape [ 1 ]))

 

# if z is greater than 0.5, our forecast is sign one (y_head = 1),

# if z is less than 0.5, our forecast is zero (y_head = 0),

for i in range (z.shape [ 1 ]):

if z [ 0 , i] & lt; = 0.5 :

  Y_prediction [ 0 , i] = 0

else :

Y_prediction [ 0 , i] = 1

 

return Y_prediction

Code: logistic regression

def logistic_regression (x_train, y_train, x_test, y_test, 

learning_rate , num_iterations):

 

dimension = x_train.shape [ 0 ]

w, b = initialize_weights_and_bias (dimension)

 

parameters, gradients, cost_list = update (

w, b, x_train, y_train, learning_rate, num_iterations)

  

  y_prediction_test = predict (

parameters [ "weight" ], parameters [ "bias" ], x_test)

y_prediction_train = predict (

arameters [ "weight" ], parameters [ "bias" ], x_train)

 

Train / test errors

print ( " train accuracy: {}% " . format (

100 - np.mean (np. abs (y_prediction_train - y_train)) * 100 ))

print ( "test accuracy: {}% " . format (

100 - np. mean (np. abs (y_prediction_test - y_test)) * 100 ))

  
logistic_regression (x_train, y_train, x_test, 

  y_test, learning_rate = 1 , num_iterations = 100

Output:

 Cost after iteration 0 : 0.692836 Cost after iteration 10: 0.498576 Cost after iteration 20: 0.404996 Cost after iteration 30: 0.350059 Cost after iteration 40: 0.313747 Cost after iteration 50: 0.287767 Cost after iteration 60: 0.268114 Cost after iteration 70: 0.252627 Cost after iterat ion 80: 0.240036 Cost after iteration 90: 0.229543 Cost after iteration 100: 0.220624 Cost after iteration 110: 0.212920 Cost after iteration 120: 0.206175 Cost after iteration 130: 0.200201 Cost after iteration 140: 0.194860 

Output:

 train accuracy: 95.23809523809524% test accuracy: 94.18604651162791% 

Code: check results with linear_model.LogisticRegression

from sklearn import linear_model

logreg = linear_model.LogisticRegression (random_state = 42 , max_iter = 150 )

print ( "test accuracy: {}" . format (

logreg.fit ( x_train.T, y_train.T) .score (x_test.T, y_test.T)))

print ( " train accuracy: {} " . format (

logreg.fit (x_train. T, y_train.T) .score (x_train.T, y_train.T)))

Output:

 test accuracy: 0.9651162790697675 train a ccuracy: 0.9668737060041408 




ML | Diagnosing Breast Cancer in Wisconsin Using Logistic Regression: StackOverflow Questions

What"s the best way to generate a UML diagram from Python source code?

Question by Mike Pirnat

A colleague is looking to generate UML class diagrams from heaps of Python source code. He"s primarily interested in the inheritance relationships, and mildly interested in compositional relationships, and doesn"t care much about class attributes that are just Python primitives.

The source code is pretty straightforward and not tremendously evil--it doesn"t do any fancy metaclass magic, for example. (It"s mostly from the days of Python 1.5.2, with some sprinklings of "modern" 2.3ish stuff.)

What"s the best existing solution to recommend?

Answer #1

I noticed that every now and then I need to Google fopen all over again, just to build a mental image of what the primary differences between the modes are. So, I thought a diagram will be faster to read next time. Maybe someone else will find that helpful too.

Answer #2

tl;dr / quick fix

  • Don"t decode/encode willy nilly
  • Don"t assume your strings are UTF-8 encoded
  • Try to convert strings to Unicode strings as soon as possible in your code
  • Fix your locale: How to solve UnicodeDecodeError in Python 3.6?
  • Don"t be tempted to use quick reload hacks

Unicode Zen in Python 2.x - The Long Version

Without seeing the source it"s difficult to know the root cause, so I"ll have to speak generally.

UnicodeDecodeError: "ascii" codec can"t decode byte generally happens when you try to convert a Python 2.x str that contains non-ASCII to a Unicode string without specifying the encoding of the original string.

In brief, Unicode strings are an entirely separate type of Python string that does not contain any encoding. They only hold Unicode point codes and therefore can hold any Unicode point from across the entire spectrum. Strings contain encoded text, beit UTF-8, UTF-16, ISO-8895-1, GBK, Big5 etc. Strings are decoded to Unicode and Unicodes are encoded to strings. Files and text data are always transferred in encoded strings.

The Markdown module authors probably use unicode() (where the exception is thrown) as a quality gate to the rest of the code - it will convert ASCII or re-wrap existing Unicodes strings to a new Unicode string. The Markdown authors can"t know the encoding of the incoming string so will rely on you to decode strings to Unicode strings before passing to Markdown.

Unicode strings can be declared in your code using the u prefix to strings. E.g.

>>> my_u = u"my ünicôdé strįng"
>>> type(my_u)
<type "unicode">

Unicode strings may also come from file, databases and network modules. When this happens, you don"t need to worry about the encoding.

Gotchas

Conversion from str to Unicode can happen even when you don"t explicitly call unicode().

The following scenarios cause UnicodeDecodeError exceptions:

# Explicit conversion without encoding
unicode("€")

# New style format string into Unicode string
# Python will try to convert value string to Unicode first
u"The currency is: {}".format("€")

# Old style format string into Unicode string
# Python will try to convert value string to Unicode first
u"The currency is: %s" % "€"

# Append string to Unicode
# Python will try to convert string to Unicode first
u"The currency is: " + "€"         

Examples

In the following diagram, you can see how the word café has been encoded in either "UTF-8" or "Cp1252" encoding depending on the terminal type. In both examples, caf is just regular ascii. In UTF-8, é is encoded using two bytes. In "Cp1252", é is 0xE9 (which is also happens to be the Unicode point value (it"s no coincidence)). The correct decode() is invoked and conversion to a Python Unicode is successfull: Diagram of a string being converted to a Python Unicode string

In this diagram, decode() is called with ascii (which is the same as calling unicode() without an encoding given). As ASCII can"t contain bytes greater than 0x7F, this will throw a UnicodeDecodeError exception:

Diagram of a string being converted to a Python Unicode string with the wrong encoding

The Unicode Sandwich

It"s good practice to form a Unicode sandwich in your code, where you decode all incoming data to Unicode strings, work with Unicodes, then encode to strs on the way out. This saves you from worrying about the encoding of strings in the middle of your code.

Input / Decode

Source code

If you need to bake non-ASCII into your source code, just create Unicode strings by prefixing the string with a u. E.g.

u"Zürich"

To allow Python to decode your source code, you will need to add an encoding header to match the actual encoding of your file. For example, if your file was encoded as "UTF-8", you would use:

# encoding: utf-8

This is only necessary when you have non-ASCII in your source code.

Files

Usually non-ASCII data is received from a file. The io module provides a TextWrapper that decodes your file on the fly, using a given encoding. You must use the correct encoding for the file - it can"t be easily guessed. For example, for a UTF-8 file:

import io
with io.open("my_utf8_file.txt", "r", encoding="utf-8") as my_file:
     my_unicode_string = my_file.read() 

my_unicode_string would then be suitable for passing to Markdown. If a UnicodeDecodeError from the read() line, then you"ve probably used the wrong encoding value.

CSV Files

The Python 2.7 CSV module does not support non-ASCII characters üò©. Help is at hand, however, with https://pypi.python.org/pypi/backports.csv.

Use it like above but pass the opened file to it:

from backports import csv
import io
with io.open("my_utf8_file.txt", "r", encoding="utf-8") as my_file:
    for row in csv.reader(my_file):
        yield row

Databases

Most Python database drivers can return data in Unicode, but usually require a little configuration. Always use Unicode strings for SQL queries.

MySQL

In the connection string add:

charset="utf8",
use_unicode=True

E.g.

>>> db = MySQLdb.connect(host="localhost", user="root", passwd="passwd", db="sandbox", use_unicode=True, charset="utf8")
PostgreSQL

Add:

psycopg2.extensions.register_type(psycopg2.extensions.UNICODE)
psycopg2.extensions.register_type(psycopg2.extensions.UNICODEARRAY)

HTTP

Web pages can be encoded in just about any encoding. The Content-type header should contain a charset field to hint at the encoding. The content can then be decoded manually against this value. Alternatively, Python-Requests returns Unicodes in response.text.

Manually

If you must decode strings manually, you can simply do my_string.decode(encoding), where encoding is the appropriate encoding. Python 2.x supported codecs are given here: Standard Encodings. Again, if you get UnicodeDecodeError then you"ve probably got the wrong encoding.

The meat of the sandwich

Work with Unicodes as you would normal strs.

Output

stdout / printing

print writes through the stdout stream. Python tries to configure an encoder on stdout so that Unicodes are encoded to the console"s encoding. For example, if a Linux shell"s locale is en_GB.UTF-8, the output will be encoded to UTF-8. On Windows, you will be limited to an 8bit code page.

An incorrectly configured console, such as corrupt locale, can lead to unexpected print errors. PYTHONIOENCODING environment variable can force the encoding for stdout.

Files

Just like input, io.open can be used to transparently convert Unicodes to encoded byte strings.

Database

The same configuration for reading will allow Unicodes to be written directly.

Python 3

Python 3 is no more Unicode capable than Python 2.x is, however it is slightly less confused on the topic. E.g the regular str is now a Unicode string and the old str is now bytes.

The default encoding is UTF-8, so if you .decode() a byte string without giving an encoding, Python 3 uses UTF-8 encoding. This probably fixes 50% of people"s Unicode problems.

Further, open() operates in text mode by default, so returns decoded str (Unicode ones). The encoding is derived from your locale, which tends to be UTF-8 on Un*x systems or an 8-bit code page, such as windows-1251, on Windows boxes.

Why you shouldn"t use sys.setdefaultencoding("utf8")

It"s a nasty hack (there"s a reason you have to use reload) that will only mask problems and hinder your migration to Python 3.x. Understand the problem, fix the root cause and enjoy Unicode zen. See Why should we NOT use sys.setdefaultencoding("utf-8") in a py script? for further details

Answer #3

(Note: this answer is based on a short blog post about einsum I wrote a while ago.)

What does einsum do?

Imagine that we have two multi-dimensional arrays, A and B. Now let"s suppose we want to...

  • multiply A with B in a particular way to create new array of products; and then maybe
  • sum this new array along particular axes; and then maybe
  • transpose the axes of the new array in a particular order.

There"s a good chance that einsum will help us do this faster and more memory-efficiently than combinations of the NumPy functions like multiply, sum and transpose will allow.

How does einsum work?

Here"s a simple (but not completely trivial) example. Take the following two arrays:

A = np.array([0, 1, 2])

B = np.array([[ 0,  1,  2,  3],
              [ 4,  5,  6,  7],
              [ 8,  9, 10, 11]])

We will multiply A and B element-wise and then sum along the rows of the new array. In "normal" NumPy we"d write:

>>> (A[:, np.newaxis] * B).sum(axis=1)
array([ 0, 22, 76])

So here, the indexing operation on A lines up the first axes of the two arrays so that the multiplication can be broadcast. The rows of the array of products are then summed to return the answer.

Now if we wanted to use einsum instead, we could write:

>>> np.einsum("i,ij->i", A, B)
array([ 0, 22, 76])

The signature string "i,ij->i" is the key here and needs a little bit of explaining. You can think of it in two halves. On the left-hand side (left of the ->) we"ve labelled the two input arrays. To the right of ->, we"ve labelled the array we want to end up with.

Here is what happens next:

  • A has one axis; we"ve labelled it i. And B has two axes; we"ve labelled axis 0 as i and axis 1 as j.

  • By repeating the label i in both input arrays, we are telling einsum that these two axes should be multiplied together. In other words, we"re multiplying array A with each column of array B, just like A[:, np.newaxis] * B does.

  • Notice that j does not appear as a label in our desired output; we"ve just used i (we want to end up with a 1D array). By omitting the label, we"re telling einsum to sum along this axis. In other words, we"re summing the rows of the products, just like .sum(axis=1) does.

That"s basically all you need to know to use einsum. It helps to play about a little; if we leave both labels in the output, "i,ij->ij", we get back a 2D array of products (same as A[:, np.newaxis] * B). If we say no output labels, "i,ij->, we get back a single number (same as doing (A[:, np.newaxis] * B).sum()).

The great thing about einsum however, is that it does not build a temporary array of products first; it just sums the products as it goes. This can lead to big savings in memory use.

A slightly bigger example

To explain the dot product, here are two new arrays:

A = array([[1, 1, 1],
           [2, 2, 2],
           [5, 5, 5]])

B = array([[0, 1, 0],
           [1, 1, 0],
           [1, 1, 1]])

We will compute the dot product using np.einsum("ij,jk->ik", A, B). Here"s a picture showing the labelling of the A and B and the output array that we get from the function:

enter image description here

You can see that label j is repeated - this means we"re multiplying the rows of A with the columns of B. Furthermore, the label j is not included in the output - we"re summing these products. Labels i and k are kept for the output, so we get back a 2D array.

It might be even clearer to compare this result with the array where the label j is not summed. Below, on the left you can see the 3D array that results from writing np.einsum("ij,jk->ijk", A, B) (i.e. we"ve kept label j):

enter image description here

Summing axis j gives the expected dot product, shown on the right.

Some exercises

To get more of a feel for einsum, it can be useful to implement familiar NumPy array operations using the subscript notation. Anything that involves combinations of multiplying and summing axes can be written using einsum.

Let A and B be two 1D arrays with the same length. For example, A = np.arange(10) and B = np.arange(5, 15).

  • The sum of A can be written:

    np.einsum("i->", A)
    
  • Element-wise multiplication, A * B, can be written:

    np.einsum("i,i->i", A, B)
    
  • The inner product or dot product, np.inner(A, B) or np.dot(A, B), can be written:

    np.einsum("i,i->", A, B) # or just use "i,i"
    
  • The outer product, np.outer(A, B), can be written:

    np.einsum("i,j->ij", A, B)
    

For 2D arrays, C and D, provided that the axes are compatible lengths (both the same length or one of them of has length 1), here are a few examples:

  • The trace of C (sum of main diagonal), np.trace(C), can be written:

    np.einsum("ii", C)
    
  • Element-wise multiplication of C and the transpose of D, C * D.T, can be written:

    np.einsum("ij,ji->ij", C, D)
    
  • Multiplying each element of C by the array D (to make a 4D array), C[:, :, None, None] * D, can be written:

    np.einsum("ij,kl->ijkl", C, D)    
    

Answer #4

How does asyncio work?

Before answering this question we need to understand a few base terms, skip these if you already know any of them.

Generators

Generators are objects that allow us to suspend the execution of a python function. User curated generators are implement using the keyword yield. By creating a normal function containing the yield keyword, we turn that function into a generator:

>>> def test():
...     yield 1
...     yield 2
...
>>> gen = test()
>>> next(gen)
1
>>> next(gen)
2
>>> next(gen)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

As you can see, calling next() on the generator causes the interpreter to load test"s frame, and return the yielded value. Calling next() again, cause the frame to load again into the interpreter stack, and continue on yielding another value.

By the third time next() is called, our generator was finished, and StopIteration was thrown.

Communicating with a generator

A less-known feature of generators, is the fact that you can communicate with them using two methods: send() and throw().

>>> def test():
...     val = yield 1
...     print(val)
...     yield 2
...     yield 3
...
>>> gen = test()
>>> next(gen)
1
>>> gen.send("abc")
abc
2
>>> gen.throw(Exception())
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 4, in test
Exception

Upon calling gen.send(), the value is passed as a return value from the yield keyword.

gen.throw() on the other hand, allows throwing Exceptions inside generators, with the exception raised at the same spot yield was called.

Returning values from generators

Returning a value from a generator, results in the value being put inside the StopIteration exception. We can later on recover the value from the exception and use it to our need.

>>> def test():
...     yield 1
...     return "abc"
...
>>> gen = test()
>>> next(gen)
1
>>> try:
...     next(gen)
... except StopIteration as exc:
...     print(exc.value)
...
abc

Behold, a new keyword: yield from

Python 3.4 came with the addition of a new keyword: yield from. What that keyword allows us to do, is pass on any next(), send() and throw() into an inner-most nested generator. If the inner generator returns a value, it is also the return value of yield from:

>>> def inner():
...     inner_result = yield 2
...     print("inner", inner_result)
...     return 3
...
>>> def outer():
...     yield 1
...     val = yield from inner()
...     print("outer", val)
...     yield 4
...
>>> gen = outer()
>>> next(gen)
1
>>> next(gen) # Goes inside inner() automatically
2
>>> gen.send("abc")
inner abc
outer 3
4

I"ve written an article to further elaborate on this topic.

Putting it all together

Upon introducing the new keyword yield from in Python 3.4, we were now able to create generators inside generators that just like a tunnel, pass the data back and forth from the inner-most to the outer-most generators. This has spawned a new meaning for generators - coroutines.

Coroutines are functions that can be stopped and resumed while being run. In Python, they are defined using the async def keyword. Much like generators, they too use their own form of yield from which is await. Before async and await were introduced in Python 3.5, we created coroutines in the exact same way generators were created (with yield from instead of await).

async def inner():
    return 1

async def outer():
    await inner()

Like every iterator or generator that implement the __iter__() method, coroutines implement __await__() which allows them to continue on every time await coro is called.

There"s a nice sequence diagram inside the Python docs that you should check out.

In asyncio, apart from coroutine functions, we have 2 important objects: tasks and futures.

Futures

Futures are objects that have the __await__() method implemented, and their job is to hold a certain state and result. The state can be one of the following:

  1. PENDING - future does not have any result or exception set.
  2. CANCELLED - future was cancelled using fut.cancel()
  3. FINISHED - future was finished, either by a result set using fut.set_result() or by an exception set using fut.set_exception()

The result, just like you have guessed, can either be a Python object, that will be returned, or an exception which may be raised.

Another important feature of future objects, is that they contain a method called add_done_callback(). This method allows functions to be called as soon as the task is done - whether it raised an exception or finished.

Tasks

Task objects are special futures, which wrap around coroutines, and communicate with the inner-most and outer-most coroutines. Every time a coroutine awaits a future, the future is passed all the way back to the task (just like in yield from), and the task receives it.

Next, the task binds itself to the future. It does so by calling add_done_callback() on the future. From now on, if the future will ever be done, by either being cancelled, passed an exception or passed a Python object as a result, the task"s callback will be called, and it will rise back up to existence.

Asyncio

The final burning question we must answer is - how is the IO implemented?

Deep inside asyncio, we have an event loop. An event loop of tasks. The event loop"s job is to call tasks every time they are ready and coordinate all that effort into one single working machine.

The IO part of the event loop is built upon a single crucial function called select. Select is a blocking function, implemented by the operating system underneath, that allows waiting on sockets for incoming or outgoing data. Upon receiving data it wakes up, and returns the sockets which received data, or the sockets which are ready for writing.

When you try to receive or send data over a socket through asyncio, what actually happens below is that the socket is first checked if it has any data that can be immediately read or sent. If its .send() buffer is full, or the .recv() buffer is empty, the socket is registered to the select function (by simply adding it to one of the lists, rlist for recv and wlist for send) and the appropriate function awaits a newly created future object, tied to that socket.

When all available tasks are waiting for futures, the event loop calls select and waits. When the one of the sockets has incoming data, or its send buffer drained up, asyncio checks for the future object tied to that socket, and sets it to done.

Now all the magic happens. The future is set to done, the task that added itself before with add_done_callback() rises up back to life, and calls .send() on the coroutine which resumes the inner-most coroutine (because of the await chain) and you read the newly received data from a nearby buffer it was spilled unto.

Method chain again, in case of recv():

  1. select.select waits.
  2. A ready socket, with data is returned.
  3. Data from the socket is moved into a buffer.
  4. future.set_result() is called.
  5. Task that added itself with add_done_callback() is now woken up.
  6. Task calls .send() on the coroutine which goes all the way into the inner-most coroutine and wakes it up.
  7. Data is being read from the buffer and returned to our humble user.

In summary, asyncio uses generator capabilities, that allow pausing and resuming functions. It uses yield from capabilities that allow passing data back and forth from the inner-most generator to the outer-most. It uses all of those in order to halt function execution while it"s waiting for IO to complete (by using the OS select function).

And the best of all? While one function is paused, another may run and interleave with the delicate fabric, which is asyncio.

Answer #5

If your main goal is to visualize the correlation matrix, rather than creating a plot per se, the convenient pandas styling options is a viable built-in solution:

import pandas as pd
import numpy as np

rs = np.random.RandomState(0)
df = pd.DataFrame(rs.rand(10, 10))
corr = df.corr()
corr.style.background_gradient(cmap="coolwarm")
# "RdBu_r", "BrBG_r", & PuOr_r are other good diverging colormaps

enter image description here

Note that this needs to be in a backend that supports rendering HTML, such as the JupyterLab Notebook.


Styling

You can easily limit the digit precision:

corr.style.background_gradient(cmap="coolwarm").set_precision(2)

enter image description here

Or get rid of the digits altogether if you prefer the matrix without annotations:

corr.style.background_gradient(cmap="coolwarm").set_properties(**{"font-size": "0pt"})

enter image description here

The styling documentation also includes instructions of more advanced styles, such as how to change the display of the cell the mouse pointer is hovering over.


Time comparison

In my testing, style.background_gradient() was 4x faster than plt.matshow() and 120x faster than sns.heatmap() with a 10x10 matrix. Unfortunately it doesn"t scale as well as plt.matshow(): the two take about the same time for a 100x100 matrix, and plt.matshow() is 10x faster for a 1000x1000 matrix.


Saving

There are a few possible ways to save the stylized dataframe:

  • Return the HTML by appending the render() method and then write the output to a file.
  • Save as an .xslx file with conditional formatting by appending the to_excel() method.
  • Combine with imgkit to save a bitmap
  • Take a screenshot (like I have done here).

Normalize colors across the entire matrix (pandas >= 0.24)

By setting axis=None, it is now possible to compute the colors based on the entire matrix rather than per column or per row:

corr.style.background_gradient(cmap="coolwarm", axis=None)

enter image description here


Single corner heatmap

Since many people are reading this answer I thought I would add a tip for how to only show one corner of the correlation matrix. I find this easier to read myself, since it removes the redundant information.

# Fill diagonal and upper half with NaNs
mask = np.zeros_like(corr, dtype=bool)
mask[np.triu_indices_from(mask)] = True
corr[mask] = np.nan
(corr
 .style
 .background_gradient(cmap="coolwarm", axis=None, vmin=-1, vmax=1)
 .highlight_null(null_color="#f1f1f1")  # Color NaNs grey
 .set_precision(2))

enter image description here

Answer #6

Without actual data it is hard to answer the question but I guess you are looking for something like this:

Top15["Citable docs per Capita"].corr(Top15["Energy Supply per Capita"])

That calculates the correlation between your two columns "Citable docs per Capita" and "Energy Supply per Capita".

To give an example:

import pandas as pd

df = pd.DataFrame({"A": range(4), "B": [2*i for i in range(4)]})

   A  B
0  0  0
1  1  2
2  2  4
3  3  6

Then

df["A"].corr(df["B"])

gives 1 as expected.

Now, if you change a value, e.g.

df.loc[2, "B"] = 4.5

   A    B
0  0  0.0
1  1  2.0
2  2  4.5
3  3  6.0

the command

df["A"].corr(df["B"])

returns

0.99586

which is still close to 1, as expected.

If you apply .corr directly to your dataframe, it will return all pairwise correlations between your columns; that"s why you then observe 1s at the diagonal of your matrix (each column is perfectly correlated with itself).

df.corr()

will therefore return

          A         B
A  1.000000  0.995862
B  0.995862  1.000000

In the graphic you show, only the upper left corner of the correlation matrix is represented (I assume).

There can be cases, where you get NaNs in your solution - check this post for an example.

If you want to filter entries above/below a certain threshold, you can check this question. If you want to plot a heatmap of the correlation coefficients, you can check this answer and if you then run into the issue with overlapping axis-labels check the following post.

Answer #7

When objects are instantiated, the object itself is passed into the self parameter.

enter image description here

Because of this, the object’s data is bound to the object. Below is an example of how you might like to visualize what each object’s data might look. Notice how ‘self’ is replaced with the objects name. I"m not saying this example diagram below is wholly accurate but it hopefully with serve a purpose in visualizing the use of self.

enter image description here

The Object is passed into the self parameter so that the object can keep hold of its own data.

Although this may not be wholly accurate, think of the process of instantiating an object like this: When an object is made it uses the class as a template for its own data and methods. Without passing it"s own name into the self parameter, the attributes and methods in the class would remain as a general template and would not be referenced to (belong to) the object. So by passing the object"s name into the self parameter it means that if 100 objects are instantiated from the one class, they can all keep track of their own data and methods.

See the illustration below:

enter image description here

Answer #8

This is kind of overkill but let"s give it a go. First lets use statsmodel to find out what the p-values should be

import pandas as pd
import numpy as np
from sklearn import datasets, linear_model
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm
from scipy import stats

diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target

X2 = sm.add_constant(X)
est = sm.OLS(y, X2)
est2 = est.fit()
print(est2.summary())

and we get

                         OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.518
Model:                            OLS   Adj. R-squared:                  0.507
Method:                 Least Squares   F-statistic:                     46.27
Date:                Wed, 08 Mar 2017   Prob (F-statistic):           3.83e-62
Time:                        10:08:24   Log-Likelihood:                -2386.0
No. Observations:                 442   AIC:                             4794.
Df Residuals:                     431   BIC:                             4839.
Df Model:                          10                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const        152.1335      2.576     59.061      0.000     147.071     157.196
x1           -10.0122     59.749     -0.168      0.867    -127.448     107.424
x2          -239.8191     61.222     -3.917      0.000    -360.151    -119.488
x3           519.8398     66.534      7.813      0.000     389.069     650.610
x4           324.3904     65.422      4.958      0.000     195.805     452.976
x5          -792.1842    416.684     -1.901      0.058   -1611.169      26.801
x6           476.7458    339.035      1.406      0.160    -189.621    1143.113
x7           101.0446    212.533      0.475      0.635    -316.685     518.774
x8           177.0642    161.476      1.097      0.273    -140.313     494.442
x9           751.2793    171.902      4.370      0.000     413.409    1089.150
x10           67.6254     65.984      1.025      0.306     -62.065     197.316
==============================================================================
Omnibus:                        1.506   Durbin-Watson:                   2.029
Prob(Omnibus):                  0.471   Jarque-Bera (JB):                1.404
Skew:                           0.017   Prob(JB):                        0.496
Kurtosis:                       2.726   Cond. No.                         227.
==============================================================================

Ok, let"s reproduce this. It is kind of overkill as we are almost reproducing a linear regression analysis using Matrix Algebra. But what the heck.

lm = LinearRegression()
lm.fit(X,y)
params = np.append(lm.intercept_,lm.coef_)
predictions = lm.predict(X)

newX = pd.DataFrame({"Constant":np.ones(len(X))}).join(pd.DataFrame(X))
MSE = (sum((y-predictions)**2))/(len(newX)-len(newX.columns))

# Note if you don"t want to use a DataFrame replace the two lines above with
# newX = np.append(np.ones((len(X),1)), X, axis=1)
# MSE = (sum((y-predictions)**2))/(len(newX)-len(newX[0]))

var_b = MSE*(np.linalg.inv(np.dot(newX.T,newX)).diagonal())
sd_b = np.sqrt(var_b)
ts_b = params/ sd_b

p_values =[2*(1-stats.t.cdf(np.abs(i),(len(newX)-len(newX[0])))) for i in ts_b]

sd_b = np.round(sd_b,3)
ts_b = np.round(ts_b,3)
p_values = np.round(p_values,3)
params = np.round(params,4)

myDF3 = pd.DataFrame()
myDF3["Coefficients"],myDF3["Standard Errors"],myDF3["t values"],myDF3["Probabilities"] = [params,sd_b,ts_b,p_values]
print(myDF3)

And this gives us.

    Coefficients  Standard Errors  t values  Probabilities
0       152.1335            2.576    59.061         0.000
1       -10.0122           59.749    -0.168         0.867
2      -239.8191           61.222    -3.917         0.000
3       519.8398           66.534     7.813         0.000
4       324.3904           65.422     4.958         0.000
5      -792.1842          416.684    -1.901         0.058
6       476.7458          339.035     1.406         0.160
7       101.0446          212.533     0.475         0.635
8       177.0642          161.476     1.097         0.273
9       751.2793          171.902     4.370         0.000
10       67.6254           65.984     1.025         0.306

So we can reproduce the values from statsmodel.

Answer #9

The golden spiral method

You said you couldn’t get the golden spiral method to work and that’s a shame because it’s really, really good. I would like to give you a complete understanding of it so that maybe you can understand how to keep this away from being “bunched up.”

So here’s a fast, non-random way to create a lattice that is approximately correct; as discussed above, no lattice will be perfect, but this may be good enough. It is compared to other methods e.g. at BendWavy.org but it just has a nice and pretty look as well as a guarantee about even spacing in the limit.

Primer: sunflower spirals on the unit disk

To understand this algorithm, I first invite you to look at the 2D sunflower spiral algorithm. This is based on the fact that the most irrational number is the golden ratio (1 + sqrt(5))/2 and if one emits points by the approach “stand at the center, turn a golden ratio of whole turns, then emit another point in that direction,” one naturally constructs a spiral which, as you get to higher and higher numbers of points, nevertheless refuses to have well-defined ‘bars’ that the points line up on.(Note 1.)

The algorithm for even spacing on a disk is,

from numpy import pi, cos, sin, sqrt, arange
import matplotlib.pyplot as pp

num_pts = 100
indices = arange(0, num_pts, dtype=float) + 0.5

r = sqrt(indices/num_pts)
theta = pi * (1 + 5**0.5) * indices

pp.scatter(r*cos(theta), r*sin(theta))
pp.show()

and it produces results that look like (n=100 and n=1000):

enter image description here

Spacing the points radially

The key strange thing is the formula r = sqrt(indices / num_pts); how did I come to that one? (Note 2.)

Well, I am using the square root here because I want these to have even-area spacing around the disk. That is the same as saying that in the limit of large N I want a little region R ∈ (r, r + dr), Θ ∈ (θ, θ + dθ) to contain a number of points proportional to its area, which is r dr dθ. Now if we pretend that we are talking about a random variable here, this has a straightforward interpretation as saying that the joint probability density for (R, Θ) is just c r for some constant c. Normalization on the unit disk would then force c = 1/π.

Now let me introduce a trick. It comes from probability theory where it’s known as sampling the inverse CDF: suppose you wanted to generate a random variable with a probability density f(z) and you have a random variable U ~ Uniform(0, 1), just like comes out of random() in most programming languages. How do you do this?

  1. First, turn your density into a cumulative distribution function or CDF, which we will call F(z). A CDF, remember, increases monotonically from 0 to 1 with derivative f(z).
  2. Then calculate the CDF’s inverse function F-1(z).
  3. You will find that Z = F-1(U) is distributed according to the target density. (Note 3).

Now the golden-ratio spiral trick spaces the points out in a nicely even pattern for θ so let’s integrate that out; for the unit disk we are left with F(r) = r2. So the inverse function is F-1(u) = u1/2, and therefore we would generate random points on the disk in polar coordinates with r = sqrt(random()); theta = 2 * pi * random().

Now instead of randomly sampling this inverse function we’re uniformly sampling it, and the nice thing about uniform sampling is that our results about how points are spread out in the limit of large N will behave as if we had randomly sampled it. This combination is the trick. Instead of random() we use (arange(0, num_pts, dtype=float) + 0.5)/num_pts, so that, say, if we want to sample 10 points they are r = 0.05, 0.15, 0.25, ... 0.95. We uniformly sample r to get equal-area spacing, and we use the sunflower increment to avoid awful “bars” of points in the output.

Now doing the sunflower on a sphere

The changes that we need to make to dot the sphere with points merely involve switching out the polar coordinates for spherical coordinates. The radial coordinate of course doesn"t enter into this because we"re on a unit sphere. To keep things a little more consistent here, even though I was trained as a physicist I"ll use mathematicians" coordinates where 0 ≤ φ ≤ π is latitude coming down from the pole and 0 ≤ θ ≤ 2π is longitude. So the difference from above is that we are basically replacing the variable r with φ.

Our area element, which was r dr dθ, now becomes the not-much-more-complicated sin(φ) dφ dθ. So our joint density for uniform spacing is sin(φ)/4π. Integrating out θ, we find f(φ) = sin(φ)/2, thus F(φ) = (1 − cos(φ))/2. Inverting this we can see that a uniform random variable would look like acos(1 - 2 u), but we sample uniformly instead of randomly, so we instead use φk = acos(1 − 2 (k + 0.5)/N). And the rest of the algorithm is just projecting this onto the x, y, and z coordinates:

from numpy import pi, cos, sin, arccos, arange
import mpl_toolkits.mplot3d
import matplotlib.pyplot as pp

num_pts = 1000
indices = arange(0, num_pts, dtype=float) + 0.5

phi = arccos(1 - 2*indices/num_pts)
theta = pi * (1 + 5**0.5) * indices

x, y, z = cos(theta) * sin(phi), sin(theta) * sin(phi), cos(phi);

pp.figure().add_subplot(111, projection="3d").scatter(x, y, z);
pp.show()

Again for n=100 and n=1000 the results look like: enter image description here enter image description here

Further research

I wanted to give a shout out to Martin Roberts’s blog. Note that above I created an offset of my indices by adding 0.5 to each index. This was just visually appealing to me, but it turns out that the choice of offset matters a lot and is not constant over the interval and can mean getting as much as 8% better accuracy in packing if chosen correctly. There should also be a way to get his R2 sequence to cover a sphere and it would be interesting to see if this also produced a nice even covering, perhaps as-is but perhaps needing to be, say, taken from only a half of the unit square cut diagonally or so and stretched around to get a circle.

Notes

  1. Those “bars” are formed by rational approximations to a number, and the best rational approximations to a number come from its continued fraction expression, z + 1/(n_1 + 1/(n_2 + 1/(n_3 + ...))) where z is an integer and n_1, n_2, n_3, ... is either a finite or infinite sequence of positive integers:

    def continued_fraction(r):
        while r != 0:
            n = floor(r)
            yield n
            r = 1/(r - n)
    

    Since the fraction part 1/(...) is always between zero and one, a large integer in the continued fraction allows for a particularly good rational approximation: “one divided by something between 100 and 101” is better than “one divided by something between 1 and 2.” The most irrational number is therefore the one which is 1 + 1/(1 + 1/(1 + ...)) and has no particularly good rational approximations; one can solve φ = 1 + 1/φ by multiplying through by φ to get the formula for the golden ratio.

  2. For folks who are not so familiar with NumPy -- all of the functions are “vectorized,” so that sqrt(array) is the same as what other languages might write map(sqrt, array). So this is a component-by-component sqrt application. The same also holds for division by a scalar or addition with scalars -- those apply to all components in parallel.

  3. The proof is simple once you know that this is the result. If you ask what"s the probability that z < Z < z + dz, this is the same as asking what"s the probability that z < F-1(U) < z + dz, apply F to all three expressions noting that it is a monotonically increasing function, hence F(z) < U < F(z + dz), expand the right hand side out to find F(z) + f(z) dz, and since U is uniform this probability is just f(z) dz as promised.

Answer #10

TLDR

Use this method if you want the fastest regex-based solution. For a dataset similar to the OP"s, it"s approximately 1000 times faster than the accepted answer.

If you don"t care about regex, use this set-based version, which is 2000 times faster than a regex union.

Optimized Regex with Trie

A simple Regex union approach becomes slow with many banned words, because the regex engine doesn"t do a very good job of optimizing the pattern.

It"s possible to create a Trie with all the banned words and write the corresponding regex. The resulting trie or regex aren"t really human-readable, but they do allow for very fast lookup and match.

Example

["foobar", "foobah", "fooxar", "foozap", "fooza"]

Regex union

The list is converted to a trie:

{
    "f": {
        "o": {
            "o": {
                "x": {
                    "a": {
                        "r": {
                            "": 1
                        }
                    }
                },
                "b": {
                    "a": {
                        "r": {
                            "": 1
                        },
                        "h": {
                            "": 1
                        }
                    }
                },
                "z": {
                    "a": {
                        "": 1,
                        "p": {
                            "": 1
                        }
                    }
                }
            }
        }
    }
}

And then to this regex pattern:

r"foo(?:ba[hr]|xar|zap?)"

Regex trie

The huge advantage is that to test if zoo matches, the regex engine only needs to compare the first character (it doesn"t match), instead of trying the 5 words. It"s a preprocess overkill for 5 words, but it shows promising results for many thousand words.

Note that (?:) non-capturing groups are used because:

Code

Here"s a slightly modified gist, which we can use as a trie.py library:

import re


class Trie():
    """Regex::Trie in Python. Creates a Trie out of a list of words. The trie can be exported to a Regex pattern.
    The corresponding Regex should match much faster than a simple Regex union."""

    def __init__(self):
        self.data = {}

    def add(self, word):
        ref = self.data
        for char in word:
            ref[char] = char in ref and ref[char] or {}
            ref = ref[char]
        ref[""] = 1

    def dump(self):
        return self.data

    def quote(self, char):
        return re.escape(char)

    def _pattern(self, pData):
        data = pData
        if "" in data and len(data.keys()) == 1:
            return None

        alt = []
        cc = []
        q = 0
        for char in sorted(data.keys()):
            if isinstance(data[char], dict):
                try:
                    recurse = self._pattern(data[char])
                    alt.append(self.quote(char) + recurse)
                except:
                    cc.append(self.quote(char))
            else:
                q = 1
        cconly = not len(alt) > 0

        if len(cc) > 0:
            if len(cc) == 1:
                alt.append(cc[0])
            else:
                alt.append("[" + "".join(cc) + "]")

        if len(alt) == 1:
            result = alt[0]
        else:
            result = "(?:" + "|".join(alt) + ")"

        if q:
            if cconly:
                result += "?"
            else:
                result = "(?:%s)?" % result
        return result

    def pattern(self):
        return self._pattern(self.dump())

Test

Here"s a small test (the same as this one):

# Encoding: utf-8
import re
import timeit
import random
from trie import Trie

with open("/usr/share/dict/american-english") as wordbook:
    banned_words = [word.strip().lower() for word in wordbook]
    random.shuffle(banned_words)

test_words = [
    ("Surely not a word", "#surely_NöTäWORD_so_regex_engine_can_return_fast"),
    ("First word", banned_words[0]),
    ("Last word", banned_words[-1]),
    ("Almost a word", "couldbeaword")
]

def trie_regex_from_words(words):
    trie = Trie()
    for word in words:
        trie.add(word)
    return re.compile(r"" + trie.pattern() + r"", re.IGNORECASE)

def find(word):
    def fun():
        return union.match(word)
    return fun

for exp in range(1, 6):
    print("
TrieRegex of %d words" % 10**exp)
    union = trie_regex_from_words(banned_words[:10**exp])
    for description, test_word in test_words:
        time = timeit.timeit(find(test_word), number=1000) * 1000
        print("  %s : %.1fms" % (description, time))

It outputs:

TrieRegex of 10 words
  Surely not a word : 0.3ms
  First word : 0.4ms
  Last word : 0.5ms
  Almost a word : 0.5ms

TrieRegex of 100 words
  Surely not a word : 0.3ms
  First word : 0.5ms
  Last word : 0.9ms
  Almost a word : 0.6ms

TrieRegex of 1000 words
  Surely not a word : 0.3ms
  First word : 0.7ms
  Last word : 0.9ms
  Almost a word : 1.1ms

TrieRegex of 10000 words
  Surely not a word : 0.1ms
  First word : 1.0ms
  Last word : 1.2ms
  Almost a word : 1.2ms

TrieRegex of 100000 words
  Surely not a word : 0.3ms
  First word : 1.2ms
  Last word : 0.9ms
  Almost a word : 1.6ms

For info, the regex begins like this:

(?:a(?:(?:"s|a(?:"s|chen|liyah(?:"s)?|r(?:dvark(?:(?:"s|s))?|on))|b(?:"s|a(?:c(?:us(?:(?:"s|es))?|[ik])|ft|lone(?:(?:"s|s))?|ndon(?:(?:ed|ing|ment(?:"s)?|s))?|s(?:e(?:(?:ment(?:"s)?|[ds]))?|h(?:(?:e[ds]|ing))?|ing)|t(?:e(?:(?:ment(?:"s)?|[ds]))?|ing|toir(?:(?:"s|s))?))|b(?:as(?:id)?|e(?:ss(?:(?:"s|es))?|y(?:(?:"s|s))?)|ot(?:(?:"s|t(?:"s)?|s))?|reviat(?:e[ds]?|i(?:ng|on(?:(?:"s|s))?))|y(?:"s)?|é(?:(?:"s|s))?)|d(?:icat(?:e[ds]?|i(?:ng|on(?:(?:"s|s))?))|om(?:en(?:(?:"s|s))?|inal)|u(?:ct(?:(?:ed|i(?:ng|on(?:(?:"s|s))?)|or(?:(?:"s|s))?|s))?|l(?:"s)?))|e(?:(?:"s|am|l(?:(?:"s|ard|son(?:"s)?))?|r(?:deen(?:"s)?|nathy(?:"s)?|ra(?:nt|tion(?:(?:"s|s))?))|t(?:(?:t(?:e(?:r(?:(?:"s|s))?|d)|ing|or(?:(?:"s|s))?)|s))?|yance(?:"s)?|d))?|hor(?:(?:r(?:e(?:n(?:ce(?:"s)?|t)|d)|ing)|s))?|i(?:d(?:e[ds]?|ing|jan(?:"s)?)|gail|l(?:ene|it(?:ies|y(?:"s)?)))|j(?:ect(?:ly)?|ur(?:ation(?:(?:"s|s))?|e[ds]?|ing))|l(?:a(?:tive(?:(?:"s|s))?|ze)|e(?:(?:st|r))?|oom|ution(?:(?:"s|s))?|y)|m"s|n(?:e(?:gat(?:e[ds]?|i(?:ng|on(?:"s)?))|r(?:"s)?)|ormal(?:(?:it(?:ies|y(?:"s)?)|ly))?)|o(?:ard|de(?:(?:"s|s))?|li(?:sh(?:(?:e[ds]|ing))?|tion(?:(?:"s|ist(?:(?:"s|s))?))?)|mina(?:bl[ey]|t(?:e[ds]?|i(?:ng|on(?:(?:"s|s))?)))|r(?:igin(?:al(?:(?:"s|s))?|e(?:(?:"s|s))?)|t(?:(?:ed|i(?:ng|on(?:(?:"s|ist(?:(?:"s|s))?|s))?|ve)|s))?)|u(?:nd(?:(?:ed|ing|s))?|t)|ve(?:(?:"s|board))?)|r(?:a(?:cadabra(?:"s)?|d(?:e[ds]?|ing)|ham(?:"s)?|m(?:(?:"s|s))?|si(?:on(?:(?:"s|s))?|ve(?:(?:"s|ly|ness(?:"s)?|s))?))|east|idg(?:e(?:(?:ment(?:(?:"s|s))?|[ds]))?|ing|ment(?:(?:"s|s))?)|o(?:ad|gat(?:e[ds]?|i(?:ng|on(?:(?:"s|s))?)))|upt(?:(?:e(?:st|r)|ly|ness(?:"s)?))?)|s(?:alom|c(?:ess(?:(?:"s|e[ds]|ing))?|issa(?:(?:"s|[es]))?|ond(?:(?:ed|ing|s))?)|en(?:ce(?:(?:"s|s))?|t(?:(?:e(?:e(?:(?:"s|ism(?:"s)?|s))?|d)|ing|ly|s))?)|inth(?:(?:"s|e(?:"s)?))?|o(?:l(?:ut(?:e(?:(?:"s|ly|st?))?|i(?:on(?:"s)?|sm(?:"s)?))|v(?:e[ds]?|ing))|r(?:b(?:(?:e(?:n(?:cy(?:"s)?|t(?:(?:"s|s))?)|d)|ing|s))?|pti...

It"s really unreadable, but for a list of 100000 banned words, this Trie regex is 1000 times faster than a simple regex union!

Here"s a diagram of the complete trie, exported with trie-python-graphviz and graphviz twopi:

Enter image description here

ML | Diagnosing Breast Cancer in Wisconsin Using Logistic Regression: StackOverflow Questions

Python"s equivalent of && (logical-and) in an if-statement

Question by delete

Here"s my code:

def front_back(a, b):
  # +++your code here+++
  if len(a) % 2 == 0 && len(b) % 2 == 0:
    return a[:(len(a)/2)] + b[:(len(b)/2)] + a[(len(a)/2):] + b[(len(b)/2):] 
  else:
    #todo! Not yet done. :P
  return

I"m getting an error in the IF conditional.
What am I doing wrong?

How do you get the logical xor of two variables in Python?

Question by Zach Hirsch

How do you get the logical xor of two variables in Python?

For example, I have two variables that I expect to be strings. I want to test that only one of them contains a True value (is not None or the empty string):

str1 = raw_input("Enter string one:")
str2 = raw_input("Enter string two:")
if logical_xor(str1, str2):
    print "ok"
else:
    print "bad"

The ^ operator seems to be bitwise, and not defined on all objects:

>>> 1 ^ 1
0
>>> 2 ^ 1
3
>>> "abc" ^ ""
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for ^: "str" and "str"

How do I log a Python error with debug information?

I am printing Python exception messages to a log file with logging.error:

import logging
try:
    1/0
except ZeroDivisionError as e:
    logging.error(e)  # ERROR:root:division by zero

Is it possible to print more detailed information about the exception and the code that generated it than just the exception string? Things like line numbers or stack traces would be great.

Making Python loggers output all messages to stdout in addition to log file

Question by user248237

Is there a way to make Python logging using the logging module automatically output things to stdout in addition to the log file where they are supposed to go? For example, I"d like all calls to logger.warning, logger.critical, logger.error to go to their intended places but in addition always be copied to stdout. This is to avoid duplicating messages like:

mylogger.critical("something failed")
print "something failed"

Separation of business logic and data access in django

I am writing a project in Django and I see that 80% of the code is in the file models.py. This code is confusing and, after a certain time, I cease to understand what is really happening.

Here is what bothers me:

  1. I find it ugly that my model level (which was supposed to be responsible only for the work with data from a database) is also sending email, walking on API to other services, etc.
  2. Also, I find it unacceptable to place business logic in the view, because this way it becomes difficult to control. For example, in my application there are at least three ways to create new instances of User, but technically it should create them uniformly.
  3. I do not always notice when the methods and properties of my models become non-deterministic and when they develop side effects.

Here is a simple example. At first, the User model was like this:

class User(db.Models):

    def get_present_name(self):
        return self.name or "Anonymous"

    def activate(self):
        self.status = "activated"
        self.save()

Over time, it turned into this:

class User(db.Models):

    def get_present_name(self): 
        # property became non-deterministic in terms of database
        # data is taken from another service by api
        return remote_api.request_user_name(self.uid) or "Anonymous" 

    def activate(self):
        # method now has a side effect (send message to user)
        self.status = "activated"
        self.save()
        send_mail("Your account is activated!", "…", [self.email])

What I want is to separate entities in my code:

  1. Entities of my database, persistence level: What data does my application keep?
  2. Entities of my application, business logic level: What does my application do?

What are the good practices to implement such an approach that can be applied in Django?

Plot logarithmic axes with matplotlib in python

Question by Jim

I want to plot a graph with one logarithmic axis using matplotlib.

I"ve been reading the docs, but can"t figure out the syntax. I know that it"s probably something simple like "scale=linear" in the plot arguments, but I can"t seem to get it right

Sample program:

import pylab
import matplotlib.pyplot as plt
a = [pow(10, i) for i in range(10)]
fig = plt.figure()
ax = fig.add_subplot(2, 1, 1)

line, = ax.plot(a, color="blue", lw=2)
pylab.show()

logger configuration to log to file and print to stdout

I"m using Python"s logging module to log some debug strings to a file which works pretty well. Now in addition, I"d like to use this module to also print the strings out to stdout. How do I do this? In order to log my strings to a file I use following code:

import logging
import logging.handlers
logger = logging.getLogger("")
logger.setLevel(logging.DEBUG)
handler = logging.handlers.RotatingFileHandler(
    LOGFILE, maxBytes=(1048576*5), backupCount=7
)
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)

and then call a logger function like

logger.debug("I am written to the file")

Thank you for some help here!

What are logits? What is the difference between softmax and softmax_cross_entropy_with_logits?

In the tensorflow API docs they use a keyword called logits. What is it? A lot of methods are written like:

tf.nn.softmax(logits, name=None)

If logits is just a generic Tensor input, why is it named logits?


Secondly, what is the difference between the following two methods?

tf.nn.softmax(logits, name=None)
tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)

I know what tf.nn.softmax does, but not the other. An example would be really helpful.

How can I color Python logging output?

Question by airmind

Some time ago, I saw a Mono application with colored output, presumably because of its log system (because all the messages were standardized).

Now, Python has the logging module, which lets you specify a lot of options to customize output. So, I"m imagining something similar would be possible with Python, but I can’t find out how to do this anywhere.

Is there any way to make the Python logging module output in color?

What I want (for instance) errors in red, debug messages in blue or yellow, and so on.

Of course this would probably require a compatible terminal (most modern terminals are); but I could fallback to the original logging output if color isn"t supported.

Any ideas how I can get colored output with the logging module?

How do I disable log messages from the Requests library?

By default, the Requests python library writes log messages to the console, along the lines of:

Starting new HTTP connection (1): example.com
http://example.com:80 "GET / HTTP/1.1" 200 606

I"m usually not interested in these messages, and would like to disable them. What would be the best way to silence those messages or decrease Requests" verbosity?

Answer #1

The Python 3 range() object doesn"t produce numbers immediately; it is a smart sequence object that produces numbers on demand. All it contains is your start, stop and step values, then as you iterate over the object the next integer is calculated each iteration.

The object also implements the object.__contains__ hook, and calculates if your number is part of its range. Calculating is a (near) constant time operation *. There is never a need to scan through all possible integers in the range.

From the range() object documentation:

The advantage of the range type over a regular list or tuple is that a range object will always take the same (small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and step values, calculating individual items and subranges as needed).

So at a minimum, your range() object would do:

class my_range:
    def __init__(self, start, stop=None, step=1, /):
        if stop is None:
            start, stop = 0, start
        self.start, self.stop, self.step = start, stop, step
        if step < 0:
            lo, hi, step = stop, start, -step
        else:
            lo, hi = start, stop
        self.length = 0 if lo > hi else ((hi - lo - 1) // step) + 1

    def __iter__(self):
        current = self.start
        if self.step < 0:
            while current > self.stop:
                yield current
                current += self.step
        else:
            while current < self.stop:
                yield current
                current += self.step

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        if i < 0:
            i += self.length
        if 0 <= i < self.length:
            return self.start + i * self.step
        raise IndexError("my_range object index out of range")

    def __contains__(self, num):
        if self.step < 0:
            if not (self.stop < num <= self.start):
                return False
        else:
            if not (self.start <= num < self.stop):
                return False
        return (num - self.start) % self.step == 0

This is still missing several things that a real range() supports (such as the .index() or .count() methods, hashing, equality testing, or slicing), but should give you an idea.

I also simplified the __contains__ implementation to only focus on integer tests; if you give a real range() object a non-integer value (including subclasses of int), a slow scan is initiated to see if there is a match, just as if you use a containment test against a list of all the contained values. This was done to continue to support other numeric types that just happen to support equality testing with integers but are not expected to support integer arithmetic as well. See the original Python issue that implemented the containment test.


* Near constant time because Python integers are unbounded and so math operations also grow in time as N grows, making this a O(log N) operation. Since it’s all executed in optimised C code and Python stores integer values in 30-bit chunks, you’d run out of memory before you saw any performance impact due to the size of the integers involved here.

Answer #2

Since this question was asked in 2010, there has been real simplification in how to do simple multithreading with Python with map and pool.

The code below comes from an article/blog post that you should definitely check out (no affiliation) - Parallelism in one line: A Better Model for Day to Day Threading Tasks. I"ll summarize below - it ends up being just a few lines of code:

from multiprocessing.dummy import Pool as ThreadPool
pool = ThreadPool(4)
results = pool.map(my_function, my_array)

Which is the multithreaded version of:

results = []
for item in my_array:
    results.append(my_function(item))

Description

Map is a cool little function, and the key to easily injecting parallelism into your Python code. For those unfamiliar, map is something lifted from functional languages like Lisp. It is a function which maps another function over a sequence.

Map handles the iteration over the sequence for us, applies the function, and stores all of the results in a handy list at the end.

Enter image description here


Implementation

Parallel versions of the map function are provided by two libraries:multiprocessing, and also its little known, but equally fantastic step child:multiprocessing.dummy.

multiprocessing.dummy is exactly the same as multiprocessing module, but uses threads instead (an important distinction - use multiple processes for CPU-intensive tasks; threads for (and during) I/O):

multiprocessing.dummy replicates the API of multiprocessing, but is no more than a wrapper around the threading module.

import urllib2
from multiprocessing.dummy import Pool as ThreadPool

urls = [
  "http://www.python.org",
  "http://www.python.org/about/",
  "http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html",
  "http://www.python.org/doc/",
  "http://www.python.org/download/",
  "http://www.python.org/getit/",
  "http://www.python.org/community/",
  "https://wiki.python.org/moin/",
]

# Make the Pool of workers
pool = ThreadPool(4)

# Open the URLs in their own threads
# and return the results
results = pool.map(urllib2.urlopen, urls)

# Close the pool and wait for the work to finish
pool.close()
pool.join()

And the timing results:

Single thread:   14.4 seconds
       4 Pool:   3.1 seconds
       8 Pool:   1.4 seconds
      13 Pool:   1.3 seconds

Passing multiple arguments (works like this only in Python 3.3 and later):

To pass multiple arrays:

results = pool.starmap(function, zip(list_a, list_b))

Or to pass a constant and an array:

results = pool.starmap(function, zip(itertools.repeat(constant), list_a))

If you are using an earlier version of Python, you can pass multiple arguments via this workaround).

(Thanks to user136036 for the helpful comment.)

Answer #3

How to iterate over rows in a DataFrame in Pandas?

Answer: DON"T*!

Iteration in Pandas is an anti-pattern and is something you should only do when you have exhausted every other option. You should not use any function with "iter" in its name for more than a few thousand rows or you will have to get used to a lot of waiting.

Do you want to print a DataFrame? Use DataFrame.to_string().

Do you want to compute something? In that case, search for methods in this order (list modified from here):

  1. Vectorization
  2. Cython routines
  3. List Comprehensions (vanilla for loop)
  4. DataFrame.apply(): i)  Reductions that can be performed in Cython, ii) Iteration in Python space
  5. DataFrame.itertuples() and iteritems()
  6. DataFrame.iterrows()

iterrows and itertuples (both receiving many votes in answers to this question) should be used in very rare circumstances, such as generating row objects/nametuples for sequential processing, which is really the only thing these functions are useful for.

Appeal to Authority

The documentation page on iteration has a huge red warning box that says:

Iterating through pandas objects is generally slow. In many cases, iterating manually over the rows is not needed [...].

* It"s actually a little more complicated than "don"t". df.iterrows() is the correct answer to this question, but "vectorize your ops" is the better one. I will concede that there are circumstances where iteration cannot be avoided (for example, some operations where the result depends on the value computed for the previous row). However, it takes some familiarity with the library to know when. If you"re not sure whether you need an iterative solution, you probably don"t. PS: To know more about my rationale for writing this answer, skip to the very bottom.


Faster than Looping: Vectorization, Cython

A good number of basic operations and computations are "vectorised" by pandas (either through NumPy, or through Cythonized functions). This includes arithmetic, comparisons, (most) reductions, reshaping (such as pivoting), joins, and groupby operations. Look through the documentation on Essential Basic Functionality to find a suitable vectorised method for your problem.

If none exists, feel free to write your own using custom Cython extensions.


Next Best Thing: List Comprehensions*

List comprehensions should be your next port of call if 1) there is no vectorized solution available, 2) performance is important, but not important enough to go through the hassle of cythonizing your code, and 3) you"re trying to perform elementwise transformation on your code. There is a good amount of evidence to suggest that list comprehensions are sufficiently fast (and even sometimes faster) for many common Pandas tasks.

The formula is simple,

# Iterating over one column - `f` is some function that processes your data
result = [f(x) for x in df["col"]]
# Iterating over two columns, use `zip`
result = [f(x, y) for x, y in zip(df["col1"], df["col2"])]
# Iterating over multiple columns - same data type
result = [f(row[0], ..., row[n]) for row in df[["col1", ...,"coln"]].to_numpy()]
# Iterating over multiple columns - differing data type
result = [f(row[0], ..., row[n]) for row in zip(df["col1"], ..., df["coln"])]

If you can encapsulate your business logic into a function, you can use a list comprehension that calls it. You can make arbitrarily complex things work through the simplicity and speed of raw Python code.

Caveats

List comprehensions assume that your data is easy to work with - what that means is your data types are consistent and you don"t have NaNs, but this cannot always be guaranteed.

  1. The first one is more obvious, but when dealing with NaNs, prefer in-built pandas methods if they exist (because they have much better corner-case handling logic), or ensure your business logic includes appropriate NaN handling logic.
  2. When dealing with mixed data types you should iterate over zip(df["A"], df["B"], ...) instead of df[["A", "B"]].to_numpy() as the latter implicitly upcasts data to the most common type. As an example if A is numeric and B is string, to_numpy() will cast the entire array to string, which may not be what you want. Fortunately zipping your columns together is the most straightforward workaround to this.

*Your mileage may vary for the reasons outlined in the Caveats section above.


An Obvious Example

Let"s demonstrate the difference with a simple example of adding two pandas columns A + B. This is a vectorizable operaton, so it will be easy to contrast the performance of the methods discussed above.

Benchmarking code, for your reference. The line at the bottom measures a function written in numpandas, a style of Pandas that mixes heavily with NumPy to squeeze out maximum performance. Writing numpandas code should be avoided unless you know what you"re doing. Stick to the API where you can (i.e., prefer vec over vec_numpy).

I should mention, however, that it isn"t always this cut and dry. Sometimes the answer to "what is the best method for an operation" is "it depends on your data". My advice is to test out different approaches on your data before settling on one.


Further Reading

* Pandas string methods are "vectorized" in the sense that they are specified on the series but operate on each element. The underlying mechanisms are still iterative, because string operations are inherently hard to vectorize.


Why I Wrote this Answer

A common trend I notice from new users is to ask questions of the form "How can I iterate over my df to do X?". Showing code that calls iterrows() while doing something inside a for loop. Here is why. A new user to the library who has not been introduced to the concept of vectorization will likely envision the code that solves their problem as iterating over their data to do something. Not knowing how to iterate over a DataFrame, the first thing they do is Google it and end up here, at this question. They then see the accepted answer telling them how to, and they close their eyes and run this code without ever first questioning if iteration is not the right thing to do.

The aim of this answer is to help new users understand that iteration is not necessarily the solution to every problem, and that better, faster and more idiomatic solutions could exist, and that it is worth investing time in exploring them. I"m not trying to start a war of iteration vs. vectorization, but I want new users to be informed when developing solutions to their problems with this library.

Answer #4

In Python, what is the purpose of __slots__ and what are the cases one should avoid this?

TLDR:

The special attribute __slots__ allows you to explicitly state which instance attributes you expect your object instances to have, with the expected results:

  1. faster attribute access.
  2. space savings in memory.

The space savings is from

  1. Storing value references in slots instead of __dict__.
  2. Denying __dict__ and __weakref__ creation if parent classes deny them and you declare __slots__.

Quick Caveats

Small caveat, you should only declare a particular slot one time in an inheritance tree. For example:

class Base:
    __slots__ = "foo", "bar"

class Right(Base):
    __slots__ = "baz", 

class Wrong(Base):
    __slots__ = "foo", "bar", "baz"        # redundant foo and bar

Python doesn"t object when you get this wrong (it probably should), problems might not otherwise manifest, but your objects will take up more space than they otherwise should. Python 3.8:

>>> from sys import getsizeof
>>> getsizeof(Right()), getsizeof(Wrong())
(56, 72)

This is because the Base"s slot descriptor has a slot separate from the Wrong"s. This shouldn"t usually come up, but it could:

>>> w = Wrong()
>>> w.foo = "foo"
>>> Base.foo.__get__(w)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: foo
>>> Wrong.foo.__get__(w)
"foo"

The biggest caveat is for multiple inheritance - multiple "parent classes with nonempty slots" cannot be combined.

To accommodate this restriction, follow best practices: Factor out all but one or all parents" abstraction which their concrete class respectively and your new concrete class collectively will inherit from - giving the abstraction(s) empty slots (just like abstract base classes in the standard library).

See section on multiple inheritance below for an example.

Requirements:

  • To have attributes named in __slots__ to actually be stored in slots instead of a __dict__, a class must inherit from object (automatic in Python 3, but must be explicit in Python 2).

  • To prevent the creation of a __dict__, you must inherit from object and all classes in the inheritance must declare __slots__ and none of them can have a "__dict__" entry.

There are a lot of details if you wish to keep reading.

Why use __slots__: Faster attribute access.

The creator of Python, Guido van Rossum, states that he actually created __slots__ for faster attribute access.

It is trivial to demonstrate measurably significant faster access:

import timeit

class Foo(object): __slots__ = "foo",

class Bar(object): pass

slotted = Foo()
not_slotted = Bar()

def get_set_delete_fn(obj):
    def get_set_delete():
        obj.foo = "foo"
        obj.foo
        del obj.foo
    return get_set_delete

and

>>> min(timeit.repeat(get_set_delete_fn(slotted)))
0.2846834529991611
>>> min(timeit.repeat(get_set_delete_fn(not_slotted)))
0.3664822799983085

The slotted access is almost 30% faster in Python 3.5 on Ubuntu.

>>> 0.3664822799983085 / 0.2846834529991611
1.2873325658284342

In Python 2 on Windows I have measured it about 15% faster.

Why use __slots__: Memory Savings

Another purpose of __slots__ is to reduce the space in memory that each object instance takes up.

My own contribution to the documentation clearly states the reasons behind this:

The space saved over using __dict__ can be significant.

SQLAlchemy attributes a lot of memory savings to __slots__.

To verify this, using the Anaconda distribution of Python 2.7 on Ubuntu Linux, with guppy.hpy (aka heapy) and sys.getsizeof, the size of a class instance without __slots__ declared, and nothing else, is 64 bytes. That does not include the __dict__. Thank you Python for lazy evaluation again, the __dict__ is apparently not called into existence until it is referenced, but classes without data are usually useless. When called into existence, the __dict__ attribute is a minimum of 280 bytes additionally.

In contrast, a class instance with __slots__ declared to be () (no data) is only 16 bytes, and 56 total bytes with one item in slots, 64 with two.

For 64 bit Python, I illustrate the memory consumption in bytes in Python 2.7 and 3.6, for __slots__ and __dict__ (no slots defined) for each point where the dict grows in 3.6 (except for 0, 1, and 2 attributes):

       Python 2.7             Python 3.6
attrs  __slots__  __dict__*   __slots__  __dict__* | *(no slots defined)
none   16         56 + 272†   16         56 + 112† | †if __dict__ referenced
one    48         56 + 272    48         56 + 112
two    56         56 + 272    56         56 + 112
six    88         56 + 1040   88         56 + 152
11     128        56 + 1040   128        56 + 240
22     216        56 + 3344   216        56 + 408     
43     384        56 + 3344   384        56 + 752

So, in spite of smaller dicts in Python 3, we see how nicely __slots__ scale for instances to save us memory, and that is a major reason you would want to use __slots__.

Just for completeness of my notes, note that there is a one-time cost per slot in the class"s namespace of 64 bytes in Python 2, and 72 bytes in Python 3, because slots use data descriptors like properties, called "members".

>>> Foo.foo
<member "foo" of "Foo" objects>
>>> type(Foo.foo)
<class "member_descriptor">
>>> getsizeof(Foo.foo)
72

Demonstration of __slots__:

To deny the creation of a __dict__, you must subclass object. Everything subclasses object in Python 3, but in Python 2 you had to be explicit:

class Base(object): 
    __slots__ = ()

now:

>>> b = Base()
>>> b.a = "a"
Traceback (most recent call last):
  File "<pyshell#38>", line 1, in <module>
    b.a = "a"
AttributeError: "Base" object has no attribute "a"

Or subclass another class that defines __slots__

class Child(Base):
    __slots__ = ("a",)

and now:

c = Child()
c.a = "a"

but:

>>> c.b = "b"
Traceback (most recent call last):
  File "<pyshell#42>", line 1, in <module>
    c.b = "b"
AttributeError: "Child" object has no attribute "b"

To allow __dict__ creation while subclassing slotted objects, just add "__dict__" to the __slots__ (note that slots are ordered, and you shouldn"t repeat slots that are already in parent classes):

class SlottedWithDict(Child): 
    __slots__ = ("__dict__", "b")

swd = SlottedWithDict()
swd.a = "a"
swd.b = "b"
swd.c = "c"

and

>>> swd.__dict__
{"c": "c"}

Or you don"t even need to declare __slots__ in your subclass, and you will still use slots from the parents, but not restrict the creation of a __dict__:

class NoSlots(Child): pass
ns = NoSlots()
ns.a = "a"
ns.b = "b"

And:

>>> ns.__dict__
{"b": "b"}

However, __slots__ may cause problems for multiple inheritance:

class BaseA(object): 
    __slots__ = ("a",)

class BaseB(object): 
    __slots__ = ("b",)

Because creating a child class from parents with both non-empty slots fails:

>>> class Child(BaseA, BaseB): __slots__ = ()
Traceback (most recent call last):
  File "<pyshell#68>", line 1, in <module>
    class Child(BaseA, BaseB): __slots__ = ()
TypeError: Error when calling the metaclass bases
    multiple bases have instance lay-out conflict

If you run into this problem, You could just remove __slots__ from the parents, or if you have control of the parents, give them empty slots, or refactor to abstractions:

from abc import ABC

class AbstractA(ABC):
    __slots__ = ()

class BaseA(AbstractA): 
    __slots__ = ("a",)

class AbstractB(ABC):
    __slots__ = ()

class BaseB(AbstractB): 
    __slots__ = ("b",)

class Child(AbstractA, AbstractB): 
    __slots__ = ("a", "b")

c = Child() # no problem!

Add "__dict__" to __slots__ to get dynamic assignment:

class Foo(object):
    __slots__ = "bar", "baz", "__dict__"

and now:

>>> foo = Foo()
>>> foo.boink = "boink"

So with "__dict__" in slots we lose some of the size benefits with the upside of having dynamic assignment and still having slots for the names we do expect.

When you inherit from an object that isn"t slotted, you get the same sort of semantics when you use __slots__ - names that are in __slots__ point to slotted values, while any other values are put in the instance"s __dict__.

Avoiding __slots__ because you want to be able to add attributes on the fly is actually not a good reason - just add "__dict__" to your __slots__ if this is required.

You can similarly add __weakref__ to __slots__ explicitly if you need that feature.

Set to empty tuple when subclassing a namedtuple:

The namedtuple builtin make immutable instances that are very lightweight (essentially, the size of tuples) but to get the benefits, you need to do it yourself if you subclass them:

from collections import namedtuple
class MyNT(namedtuple("MyNT", "bar baz")):
    """MyNT is an immutable and lightweight object"""
    __slots__ = ()

usage:

>>> nt = MyNT("bar", "baz")
>>> nt.bar
"bar"
>>> nt.baz
"baz"

And trying to assign an unexpected attribute raises an AttributeError because we have prevented the creation of __dict__:

>>> nt.quux = "quux"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: "MyNT" object has no attribute "quux"

You can allow __dict__ creation by leaving off __slots__ = (), but you can"t use non-empty __slots__ with subtypes of tuple.

Biggest Caveat: Multiple inheritance

Even when non-empty slots are the same for multiple parents, they cannot be used together:

class Foo(object): 
    __slots__ = "foo", "bar"
class Bar(object):
    __slots__ = "foo", "bar" # alas, would work if empty, i.e. ()

>>> class Baz(Foo, Bar): pass
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Error when calling the metaclass bases
    multiple bases have instance lay-out conflict

Using an empty __slots__ in the parent seems to provide the most flexibility, allowing the child to choose to prevent or allow (by adding "__dict__" to get dynamic assignment, see section above) the creation of a __dict__:

class Foo(object): __slots__ = ()
class Bar(object): __slots__ = ()
class Baz(Foo, Bar): __slots__ = ("foo", "bar")
b = Baz()
b.foo, b.bar = "foo", "bar"

You don"t have to have slots - so if you add them, and remove them later, it shouldn"t cause any problems.

Going out on a limb here: If you"re composing mixins or using abstract base classes, which aren"t intended to be instantiated, an empty __slots__ in those parents seems to be the best way to go in terms of flexibility for subclassers.

To demonstrate, first, let"s create a class with code we"d like to use under multiple inheritance

class AbstractBase:
    __slots__ = ()
    def __init__(self, a, b):
        self.a = a
        self.b = b
    def __repr__(self):
        return f"{type(self).__name__}({repr(self.a)}, {repr(self.b)})"

We could use the above directly by inheriting and declaring the expected slots:

class Foo(AbstractBase):
    __slots__ = "a", "b"

But we don"t care about that, that"s trivial single inheritance, we need another class we might also inherit from, maybe with a noisy attribute:

class AbstractBaseC:
    __slots__ = ()
    @property
    def c(self):
        print("getting c!")
        return self._c
    @c.setter
    def c(self, arg):
        print("setting c!")
        self._c = arg

Now if both bases had nonempty slots, we couldn"t do the below. (In fact, if we wanted, we could have given AbstractBase nonempty slots a and b, and left them out of the below declaration - leaving them in would be wrong):

class Concretion(AbstractBase, AbstractBaseC):
    __slots__ = "a b _c".split()

And now we have functionality from both via multiple inheritance, and can still deny __dict__ and __weakref__ instantiation:

>>> c = Concretion("a", "b")
>>> c.c = c
setting c!
>>> c.c
getting c!
Concretion("a", "b")
>>> c.d = "d"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: "Concretion" object has no attribute "d"

Other cases to avoid slots:

  • Avoid them when you want to perform __class__ assignment with another class that doesn"t have them (and you can"t add them) unless the slot layouts are identical. (I am very interested in learning who is doing this and why.)
  • Avoid them if you want to subclass variable length builtins like long, tuple, or str, and you want to add attributes to them.
  • Avoid them if you insist on providing default values via class attributes for instance variables.

You may be able to tease out further caveats from the rest of the __slots__ documentation (the 3.7 dev docs are the most current), which I have made significant recent contributions to.

Critiques of other answers

The current top answers cite outdated information and are quite hand-wavy and miss the mark in some important ways.

Do not "only use __slots__ when instantiating lots of objects"

I quote:

"You would want to use __slots__ if you are going to instantiate a lot (hundreds, thousands) of objects of the same class."

Abstract Base Classes, for example, from the collections module, are not instantiated, yet __slots__ are declared for them.

Why?

If a user wishes to deny __dict__ or __weakref__ creation, those things must not be available in the parent classes.

__slots__ contributes to reusability when creating interfaces or mixins.

It is true that many Python users aren"t writing for reusability, but when you are, having the option to deny unnecessary space usage is valuable.

__slots__ doesn"t break pickling

When pickling a slotted object, you may find it complains with a misleading TypeError:

>>> pickle.loads(pickle.dumps(f))
TypeError: a class that defines __slots__ without defining __getstate__ cannot be pickled

This is actually incorrect. This message comes from the oldest protocol, which is the default. You can select the latest protocol with the -1 argument. In Python 2.7 this would be 2 (which was introduced in 2.3), and in 3.6 it is 4.

>>> pickle.loads(pickle.dumps(f, -1))
<__main__.Foo object at 0x1129C770>

in Python 2.7:

>>> pickle.loads(pickle.dumps(f, 2))
<__main__.Foo object at 0x1129C770>

in Python 3.6

>>> pickle.loads(pickle.dumps(f, 4))
<__main__.Foo object at 0x1129C770>

So I would keep this in mind, as it is a solved problem.

Critique of the (until Oct 2, 2016) accepted answer

The first paragraph is half short explanation, half predictive. Here"s the only part that actually answers the question

The proper use of __slots__ is to save space in objects. Instead of having a dynamic dict that allows adding attributes to objects at anytime, there is a static structure which does not allow additions after creation. This saves the overhead of one dict for every object that uses slots

The second half is wishful thinking, and off the mark:

While this is sometimes a useful optimization, it would be completely unnecessary if the Python interpreter was dynamic enough so that it would only require the dict when there actually were additions to the object.

Python actually does something similar to this, only creating the __dict__ when it is accessed, but creating lots of objects with no data is fairly ridiculous.

The second paragraph oversimplifies and misses actual reasons to avoid __slots__. The below is not a real reason to avoid slots (for actual reasons, see the rest of my answer above.):

They change the behavior of the objects that have slots in a way that can be abused by control freaks and static typing weenies.

It then goes on to discuss other ways of accomplishing that perverse goal with Python, not discussing anything to do with __slots__.

The third paragraph is more wishful thinking. Together it is mostly off-the-mark content that the answerer didn"t even author and contributes to ammunition for critics of the site.

Memory usage evidence

Create some normal objects and slotted objects:

>>> class Foo(object): pass
>>> class Bar(object): __slots__ = ()

Instantiate a million of them:

>>> foos = [Foo() for f in xrange(1000000)]
>>> bars = [Bar() for b in xrange(1000000)]

Inspect with guppy.hpy().heap():

>>> guppy.hpy().heap()
Partition of a set of 2028259 objects. Total size = 99763360 bytes.
 Index  Count   %     Size   % Cumulative  % Kind (class / dict of class)
     0 1000000  49 64000000  64  64000000  64 __main__.Foo
     1     169   0 16281480  16  80281480  80 list
     2 1000000  49 16000000  16  96281480  97 __main__.Bar
     3   12284   1   987472   1  97268952  97 str
...

Access the regular objects and their __dict__ and inspect again:

>>> for f in foos:
...     f.__dict__
>>> guppy.hpy().heap()
Partition of a set of 3028258 objects. Total size = 379763480 bytes.
 Index  Count   %      Size    % Cumulative  % Kind (class / dict of class)
     0 1000000  33 280000000  74 280000000  74 dict of __main__.Foo
     1 1000000  33  64000000  17 344000000  91 __main__.Foo
     2     169   0  16281480   4 360281480  95 list
     3 1000000  33  16000000   4 376281480  99 __main__.Bar
     4   12284   0    987472   0 377268952  99 str
...

This is consistent with the history of Python, from Unifying types and classes in Python 2.2

If you subclass a built-in type, extra space is automatically added to the instances to accomodate __dict__ and __weakrefs__. (The __dict__ is not initialized until you use it though, so you shouldn"t worry about the space occupied by an empty dictionary for each instance you create.) If you don"t need this extra space, you can add the phrase "__slots__ = []" to your class.

Answer #5

os.listdir() - list in the current directory

With listdir in os module you get the files and the folders in the current dir

 import os
 arr = os.listdir()
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

Looking in a directory

arr = os.listdir("c:\files")

glob from glob

with glob you can specify a type of file to list like this

import glob

txtfiles = []
for file in glob.glob("*.txt"):
    txtfiles.append(file)

glob in a list comprehension

mylist = [f for f in glob.glob("*.txt")]

get the full path of only files in the current directory

import os
from os import listdir
from os.path import isfile, join

cwd = os.getcwd()
onlyfiles = [os.path.join(cwd, f) for f in os.listdir(cwd) if 
os.path.isfile(os.path.join(cwd, f))]
print(onlyfiles) 

["G:\getfilesname\getfilesname.py", "G:\getfilesname\example.txt"]

Getting the full path name with os.path.abspath

You get the full path in return

 import os
 files_path = [os.path.abspath(x) for x in os.listdir()]
 print(files_path)
 
 ["F:\documentiapplications.txt", "F:\documenticollections.txt"]

Walk: going through sub directories

os.walk returns the root, the directories list and the files list, that is why I unpacked them in r, d, f in the for loop; it, then, looks for other files and directories in the subfolders of the root and so on until there are no subfolders.

import os

# Getting the current work directory (cwd)
thisdir = os.getcwd()

# r=root, d=directories, f = files
for r, d, f in os.walk(thisdir):
    for file in f:
        if file.endswith(".docx"):
            print(os.path.join(r, file))

os.listdir(): get files in the current directory (Python 2)

In Python 2, if you want the list of the files in the current directory, you have to give the argument as "." or os.getcwd() in the os.listdir method.

 import os
 arr = os.listdir(".")
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

To go up in the directory tree

# Method 1
x = os.listdir("..")

# Method 2
x= os.listdir("/")

Get files: os.listdir() in a particular directory (Python 2 and 3)

 import os
 arr = os.listdir("F:\python")
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

Get files of a particular subdirectory with os.listdir()

import os

x = os.listdir("./content")

os.walk(".") - current directory

 import os
 arr = next(os.walk("."))[2]
 print(arr)
 
 >>> ["5bs_Turismo1.pdf", "5bs_Turismo1.pptx", "esperienza.txt"]

next(os.walk(".")) and os.path.join("dir", "file")

 import os
 arr = []
 for d,r,f in next(os.walk("F:\_python")):
     for file in f:
         arr.append(os.path.join(r,file))

 for f in arr:
     print(files)

>>> F:\_python\dict_class.py
>>> F:\_python\programmi.txt

next(os.walk("F:\") - get the full path - list comprehension

 [os.path.join(r,file) for r,d,f in next(os.walk("F:\_python")) for file in f]
 
 >>> ["F:\_python\dict_class.py", "F:\_python\programmi.txt"]

os.walk - get full path - all files in sub dirs**

x = [os.path.join(r,file) for r,d,f in os.walk("F:\_python") for file in f]
print(x)

>>> ["F:\_python\dict.py", "F:\_python\progr.txt", "F:\_python\readl.py"]

os.listdir() - get only txt files

 arr_txt = [x for x in os.listdir() if x.endswith(".txt")]
 print(arr_txt)
 
 >>> ["work.txt", "3ebooks.txt"]

Using glob to get the full path of the files

If I should need the absolute path of the files:

from path import path
from glob import glob
x = [path(f).abspath() for f in glob("F:\*.txt")]
for f in x:
    print(f)

>>> F:acquistionline.txt
>>> F:acquisti_2018.txt
>>> F:ootstrap_jquery_ecc.txt

Using os.path.isfile to avoid directories in the list

import os.path
listOfFiles = [f for f in os.listdir() if os.path.isfile(f)]
print(listOfFiles)

>>> ["a simple game.py", "data.txt", "decorator.py"]

Using pathlib from Python 3.4

import pathlib

flist = []
for p in pathlib.Path(".").iterdir():
    if p.is_file():
        print(p)
        flist.append(p)

 >>> error.PNG
 >>> exemaker.bat
 >>> guiprova.mp3
 >>> setup.py
 >>> speak_gui2.py
 >>> thumb.PNG

With list comprehension:

flist = [p for p in pathlib.Path(".").iterdir() if p.is_file()]

Alternatively, use pathlib.Path() instead of pathlib.Path(".")

Use glob method in pathlib.Path()

import pathlib

py = pathlib.Path().glob("*.py")
for file in py:
    print(file)

>>> stack_overflow_list.py
>>> stack_overflow_list_tkinter.py

Get all and only files with os.walk

import os
x = [i[2] for i in os.walk(".")]
y=[]
for t in x:
    for f in t:
        y.append(f)
print(y)

>>> ["append_to_list.py", "data.txt", "data1.txt", "data2.txt", "data_180617", "os_walk.py", "READ2.py", "read_data.py", "somma_defaltdic.py", "substitute_words.py", "sum_data.py", "data.txt", "data1.txt", "data_180617"]

Get only files with next and walk in a directory

 import os
 x = next(os.walk("F://python"))[2]
 print(x)
 
 >>> ["calculator.bat","calculator.py"]

Get only directories with next and walk in a directory

 import os
 next(os.walk("F://python"))[1] # for the current dir use (".")
 
 >>> ["python3","others"]

Get all the subdir names with walk

for r,d,f in os.walk("F:\_python"):
    for dirs in d:
        print(dirs)

>>> .vscode
>>> pyexcel
>>> pyschool.py
>>> subtitles
>>> _metaprogramming
>>> .ipynb_checkpoints

os.scandir() from Python 3.5 and greater

import os
x = [f.name for f in os.scandir() if f.is_file()]
print(x)

>>> ["calculator.bat","calculator.py"]

# Another example with scandir (a little variation from docs.python.org)
# This one is more efficient than os.listdir.
# In this case, it shows the files only in the current directory
# where the script is executed.

import os
with os.scandir() as i:
    for entry in i:
        if entry.is_file():
            print(entry.name)

>>> ebookmaker.py
>>> error.PNG
>>> exemaker.bat
>>> guiprova.mp3
>>> setup.py
>>> speakgui4.py
>>> speak_gui2.py
>>> speak_gui3.py
>>> thumb.PNG

Examples:

Ex. 1: How many files are there in the subdirectories?

In this example, we look for the number of files that are included in all the directory and its subdirectories.

import os

def count(dir, counter=0):
    "returns number of files in dir and subdirs"
    for pack in os.walk(dir):
        for f in pack[2]:
            counter += 1
    return dir + " : " + str(counter) + "files"

print(count("F:\python"))

>>> "F:\python" : 12057 files"

Ex.2: How to copy all files from a directory to another?

A script to make order in your computer finding all files of a type (default: pptx) and copying them in a new folder.

import os
import shutil
from path import path

destination = "F:\file_copied"
# os.makedirs(destination)

def copyfile(dir, filetype="pptx", counter=0):
    "Searches for pptx (or other - pptx is the default) files and copies them"
    for pack in os.walk(dir):
        for f in pack[2]:
            if f.endswith(filetype):
                fullpath = pack[0] + "\" + f
                print(fullpath)
                shutil.copy(fullpath, destination)
                counter += 1
    if counter > 0:
        print("-" * 30)
        print("	==> Found in: `" + dir + "` : " + str(counter) + " files
")

for dir in os.listdir():
    "searches for folders that starts with `_`"
    if dir[0] == "_":
        # copyfile(dir, filetype="pdf")
        copyfile(dir, filetype="txt")


>>> _compiti18Compito Contabilità 1conti.txt
>>> _compiti18Compito Contabilità 1modula4.txt
>>> _compiti18Compito Contabilità 1moduloa4.txt
>>> ------------------------
>>> ==> Found in: `_compiti18` : 3 files

Ex. 3: How to get all the files in a txt file

In case you want to create a txt file with all the file names:

import os
mylist = ""
with open("filelist.txt", "w", encoding="utf-8") as file:
    for eachfile in os.listdir():
        mylist += eachfile + "
"
    file.write(mylist)

Example: txt with all the files of an hard drive

"""
We are going to save a txt file with all the files in your directory.
We will use the function walk()
"""

import os

# see all the methods of os
# print(*dir(os), sep=", ")
listafile = []
percorso = []
with open("lista_file.txt", "w", encoding="utf-8") as testo:
    for root, dirs, files in os.walk("D:\"):
        for file in files:
            listafile.append(file)
            percorso.append(root + "\" + file)
            testo.write(file + "
")
listafile.sort()
print("N. of files", len(listafile))
with open("lista_file_ordinata.txt", "w", encoding="utf-8") as testo_ordinato:
    for file in listafile:
        testo_ordinato.write(file + "
")

with open("percorso.txt", "w", encoding="utf-8") as file_percorso:
    for file in percorso:
        file_percorso.write(file + "
")

os.system("lista_file.txt")
os.system("lista_file_ordinata.txt")
os.system("percorso.txt")

All the file of C: in one text file

This is a shorter version of the previous code. Change the folder where to start finding the files if you need to start from another position. This code generate a 50 mb on text file on my computer with something less then 500.000 lines with files with the complete path.

import os

with open("file.txt", "w", encoding="utf-8") as filewrite:
    for r, d, f in os.walk("C:\"):
        for file in f:
            filewrite.write(f"{r + file}
")

How to write a file with all paths in a folder of a type

With this function you can create a txt file that will have the name of a type of file that you look for (ex. pngfile.txt) with all the full path of all the files of that type. It can be useful sometimes, I think.

import os

def searchfiles(extension=".ttf", folder="H:\"):
    "Create a txt file with all the file of a type"
    with open(extension[1:] + "file.txt", "w", encoding="utf-8") as filewrite:
        for r, d, f in os.walk(folder):
            for file in f:
                if file.endswith(extension):
                    filewrite.write(f"{r + file}
")

# looking for png file (fonts) in the hard disk H:
searchfiles(".png", "H:\")

>>> H:4bs_18Dolphins5.png
>>> H:4bs_18Dolphins6.png
>>> H:4bs_18Dolphins7.png
>>> H:5_18marketing htmlassetsimageslogo2.png
>>> H:7z001.png
>>> H:7z002.png

(New) Find all files and open them with tkinter GUI

I just wanted to add in this 2019 a little app to search for all files in a dir and be able to open them by doubleclicking on the name of the file in the list. enter image description here

import tkinter as tk
import os

def searchfiles(extension=".txt", folder="H:\"):
    "insert all files in the listbox"
    for r, d, f in os.walk(folder):
        for file in f:
            if file.endswith(extension):
                lb.insert(0, r + "\" + file)

def open_file():
    os.startfile(lb.get(lb.curselection()[0]))

root = tk.Tk()
root.geometry("400x400")
bt = tk.Button(root, text="Search", command=lambda:searchfiles(".png", "H:\"))
bt.pack()
lb = tk.Listbox(root)
lb.pack(fill="both", expand=1)
lb.bind("<Double-Button>", lambda x: open_file())
root.mainloop()

Answer #6

This is the behaviour to adopt when the referenced object is deleted. It is not specific to Django; this is an SQL standard. Although Django has its own implementation on top of SQL. (1)

There are seven possible actions to take when such event occurs:

  • CASCADE: When the referenced object is deleted, also delete the objects that have references to it (when you remove a blog post for instance, you might want to delete comments as well). SQL equivalent: CASCADE.
  • PROTECT: Forbid the deletion of the referenced object. To delete it you will have to delete all objects that reference it manually. SQL equivalent: RESTRICT.
  • RESTRICT: (introduced in Django 3.1) Similar behavior as PROTECT that matches SQL"s RESTRICT more accurately. (See django documentation example)
  • SET_NULL: Set the reference to NULL (requires the field to be nullable). For instance, when you delete a User, you might want to keep the comments he posted on blog posts, but say it was posted by an anonymous (or deleted) user. SQL equivalent: SET NULL.
  • SET_DEFAULT: Set the default value. SQL equivalent: SET DEFAULT.
  • SET(...): Set a given value. This one is not part of the SQL standard and is entirely handled by Django.
  • DO_NOTHING: Probably a very bad idea since this would create integrity issues in your database (referencing an object that actually doesn"t exist). SQL equivalent: NO ACTION. (2)

Source: Django documentation

See also the documentation of PostgreSQL for instance.

In most cases, CASCADE is the expected behaviour, but for every ForeignKey, you should always ask yourself what is the expected behaviour in this situation. PROTECT and SET_NULL are often useful. Setting CASCADE where it should not, can potentially delete all of your database in cascade, by simply deleting a single user.


Additional note to clarify cascade direction

It"s funny to notice that the direction of the CASCADE action is not clear to many people. Actually, it"s funny to notice that only the CASCADE action is not clear. I understand the cascade behavior might be confusing, however you must think that it is the same direction as any other action. Thus, if you feel that CASCADE direction is not clear to you, it actually means that on_delete behavior is not clear to you.

In your database, a foreign key is basically represented by an integer field which value is the primary key of the foreign object. Let"s say you have an entry comment_A, which has a foreign key to an entry article_B. If you delete the entry comment_A, everything is fine. article_B used to live without comment_A and don"t bother if it"s deleted. However, if you delete article_B, then comment_A panics! It never lived without article_B and needs it, and it"s part of its attributes (article=article_B, but what is article_B???). This is where on_delete steps in, to determine how to resolve this integrity error, either by saying:

  • "No! Please! Don"t! I can"t live without you!" (which is said PROTECT or RESTRICT in Django/SQL)
  • "All right, if I"m not yours, then I"m nobody"s" (which is said SET_NULL)
  • "Good bye world, I can"t live without article_B" and commit suicide (this is the CASCADE behavior).
  • "It"s OK, I"ve got spare lover, and I"ll reference article_C from now" (SET_DEFAULT, or even SET(...)).
  • "I can"t face reality, and I"ll keep calling your name even if that"s the only thing left to me!" (DO_NOTHING)

I hope it makes cascade direction clearer. :)


Footnotes

(1) Django has its own implementation on top of SQL. And, as mentioned by @JoeMjr2 in the comments below, Django will not create the SQL constraints. If you want the constraints to be ensured by your database (for instance, if your database is used by another application, or if you hang in the database console from time to time), you might want to set the related constraints manually yourself. There is an open ticket to add support for database-level on delete constrains in Django.

(2) Actually, there is one case where DO_NOTHING can be useful: If you want to skip Django"s implementation and implement the constraint yourself at the database-level.

Answer #7

You can also use the option_context, with one or more options:

with pd.option_context("display.max_rows", None, "display.max_columns", None):  # more options can be specified also
    print(df)

This will automatically return the options to their previous values.

If you are working on jupyter-notebook, using display(df) instead of print(df) will use jupyter rich display logic (like so).

Answer #8

The or and and python statements require truth-values. For pandas these are considered ambiguous so you should use "bitwise" | (or) or & (and) operations:

result = result[(result["var"]>0.25) | (result["var"]<-0.25)]

These are overloaded for these kind of datastructures to yield the element-wise or (or and).


Just to add some more explanation to this statement:

The exception is thrown when you want to get the bool of a pandas.Series:

>>> import pandas as pd
>>> x = pd.Series([1])
>>> bool(x)
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

What you hit was a place where the operator implicitly converted the operands to bool (you used or but it also happens for and, if and while):

>>> x or x
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
>>> x and x
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
>>> if x:
...     print("fun")
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
>>> while x:
...     print("fun")
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

Besides these 4 statements there are several python functions that hide some bool calls (like any, all, filter, ...) these are normally not problematic with pandas.Series but for completeness I wanted to mention these.


In your case the exception isn"t really helpful, because it doesn"t mention the right alternatives. For and and or you can use (if you want element-wise comparisons):

  • numpy.logical_or:

    >>> import numpy as np
    >>> np.logical_or(x, y)
    

    or simply the | operator:

    >>> x | y
    
  • numpy.logical_and:

    >>> np.logical_and(x, y)
    

    or simply the & operator:

    >>> x & y
    

If you"re using the operators then make sure you set your parenthesis correctly because of the operator precedence.

There are several logical numpy functions which should work on pandas.Series.


The alternatives mentioned in the Exception are more suited if you encountered it when doing if or while. I"ll shortly explain each of these:

  • If you want to check if your Series is empty:

    >>> x = pd.Series([])
    >>> x.empty
    True
    >>> x = pd.Series([1])
    >>> x.empty
    False
    

    Python normally interprets the length of containers (like list, tuple, ...) as truth-value if it has no explicit boolean interpretation. So if you want the python-like check, you could do: if x.size or if not x.empty instead of if x.

  • If your Series contains one and only one boolean value:

    >>> x = pd.Series([100])
    >>> (x > 50).bool()
    True
    >>> (x < 50).bool()
    False
    
  • If you want to check the first and only item of your Series (like .bool() but works even for not boolean contents):

    >>> x = pd.Series([100])
    >>> x.item()
    100
    
  • If you want to check if all or any item is not-zero, not-empty or not-False:

    >>> x = pd.Series([0, 1, 2])
    >>> x.all()   # because one element is zero
    False
    >>> x.any()   # because one (or more) elements are non-zero
    True
    

Answer #9

If you like ascii art:

  • "VALID" = without padding:

       inputs:         1  2  3  4  5  6  7  8  9  10 11 (12 13)
                      |________________|                dropped
                                     |_________________|
    
  • "SAME" = with zero padding:

                   pad|                                      |pad
       inputs:      0 |1  2  3  4  5  6  7  8  9  10 11 12 13|0  0
                   |________________|
                                  |_________________|
                                                 |________________|
    

In this example:

  • Input width = 13
  • Filter width = 6
  • Stride = 5

Notes:

  • "VALID" only ever drops the right-most columns (or bottom-most rows).
  • "SAME" tries to pad evenly left and right, but if the amount of columns to be added is odd, it will add the extra column to the right, as is the case in this example (the same logic applies vertically: there may be an extra row of zeros at the bottom).

Edit:

About the name:

  • With "SAME" padding, if you use a stride of 1, the layer"s outputs will have the same spatial dimensions as its inputs.
  • With "VALID" padding, there"s no "made-up" padding inputs. The layer only uses valid input data.

Answer #10

⚡️ TL;DR — One line solution.

All you have to do is:

sudo easy_install pip

2019: ⚠️easy_install has been deprecated. Check Method #2 below for preferred installation!

Details:

⚡️ OK, I read the solutions given above, but here"s an EASY solution to install pip.

MacOS comes with Python installed. But to make sure that you have Python installed open the terminal and run the following command.

python --version

If this command returns a version number that means Python exists. Which also means that you already have access to easy_install considering you are using macOS/OSX.

ℹ️ Now, all you have to do is run the following command.

sudo easy_install pip

After that, pip will be installed and you"ll be able to use it for installing other packages.

Let me know if you have any problems installing pip this way.

Cheers!

P.S. I ended up blogging a post about it. QuickTip: How Do I Install pip on macOS or OS X?


✅ UPDATE (Jan 2019): METHOD #2: Two line solution —

easy_install has been deprecated. Please use get-pip.py instead.

First of all download the get-pip file

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py

Now run this file to install pip

python get-pip.py

That should do it.

Another gif you said? Here ya go!

ML | Diagnosing Breast Cancer in Wisconsin Using Logistic Regression: StackOverflow Questions

How do I merge two dictionaries in a single expression (taking union of dictionaries)?

Question by Carl Meyer

I have two Python dictionaries, and I want to write a single expression that returns these two dictionaries, merged (i.e. taking the union). The update() method would be what I need, if it returned its result instead of modifying a dictionary in-place.

>>> x = {"a": 1, "b": 2}
>>> y = {"b": 10, "c": 11}
>>> z = x.update(y)
>>> print(z)
None
>>> x
{"a": 1, "b": 10, "c": 11}

How can I get that final merged dictionary in z, not x?

(To be extra-clear, the last-one-wins conflict-handling of dict.update() is what I"m looking for as well.)

Accessing the index in "for" loops?

Question by Joan Venge

How do I access the index in a for loop like the following?

ints = [8, 23, 45, 12, 78]
for i in ints:
    print("item #{} = {}".format(???, i))

I want to get this output:

item #1 = 8
item #2 = 23
item #3 = 45
item #4 = 12
item #5 = 78

When I loop through it using a for loop, how do I access the loop index, from 1 to 5 in this case?

Iterating over dictionaries using "for" loops

I am a bit puzzled by the following code:

d = {"x": 1, "y": 2, "z": 3} 
for key in d:
    print (key, "corresponds to", d[key])

What I don"t understand is the key portion. How does Python recognize that it needs only to read the key from the dictionary? Is key a special word in Python? Or is it simply a variable?

Using global variables in a function

How can I create or use a global variable in a function?

If I create a global variable in one function, how can I use that global variable in another function? Do I need to store the global variable in a local variable of the function which needs its access?

Manually raising (throwing) an exception in Python

How can I raise an exception in Python so that it can later be caught via an except block?

Calling a function of a module by using its name (a string)

What is the best way to go about calling a function given a string with the function"s name in a Python program. For example, let"s say that I have a module foo, and I have a string whose content is "bar". What is the best way to call foo.bar()?

I need to get the return value of the function, which is why I don"t just use eval. I figured out how to do it by using eval to define a temp function that returns the result of that function call, but I"m hoping that there is a more elegant way to do this.

What is the meaning of single and double underscore before an object name?

Can someone please explain the exact meaning of having single and double leading underscores before an object"s name in Python, and the difference between both?

Also, does that meaning stay the same regardless of whether the object in question is a variable, a function, a method, etc.?

Save plot to image file instead of displaying it using Matplotlib

I am writing a quick-and-dirty script to generate plots on the fly. I am using the code below (from Matplotlib documentation) as a starting point:

from pylab import figure, axes, pie, title, show

# Make a square figure and axes
figure(1, figsize=(6, 6))
ax = axes([0.1, 0.1, 0.8, 0.8])

labels = "Frogs", "Hogs", "Dogs", "Logs"
fracs = [15, 30, 45, 10]

explode = (0, 0.05, 0, 0)
pie(fracs, explode=explode, labels=labels, autopct="%1.1f%%", shadow=True)
title("Raining Hogs and Dogs", bbox={"facecolor": "0.8", "pad": 5})

show()  # Actually, don"t show, just save to foo.png

I don"t want to display the plot on a GUI, instead, I want to save the plot to a file (say foo.png), so that, for example, it can be used in batch scripts. How do I do that?

What are the differences between type() and isinstance()?

What are the differences between these two code fragments?

Using type():

import types

if type(a) is types.DictType:
    do_something()
if type(b) in types.StringTypes:
    do_something_else()

Using isinstance():

if isinstance(a, dict):
    do_something()
if isinstance(b, str) or isinstance(b, unicode):
    do_something_else()

How can I install packages using pip according to the requirements.txt file from a local directory?

Here is the problem:

I have a requirements.txt file that looks like:

BeautifulSoup==3.2.0
Django==1.3
Fabric==1.2.0
Jinja2==2.5.5
PyYAML==3.09
Pygments==1.4
SQLAlchemy==0.7.1
South==0.7.3
amqplib==0.6.1
anyjson==0.3
...

I have a local archive directory containing all the packages + others.

I have created a new virtualenv with

bin/virtualenv testing

Upon activating it, I tried to install the packages according to requirements.txt from the local archive directory.

source bin/activate
pip install -r /path/to/requirements.txt -f file:///path/to/archive/

I got some output that seems to indicate that the installation is fine:

Downloading/unpacking Fabric==1.2.0 (from -r ../testing/requirements.txt (line 3))
  Running setup.py egg_info for package Fabric
    warning: no previously-included files matching "*" found under directory "docs/_build"
    warning: no files found matching "fabfile.py"
Downloading/unpacking South==0.7.3 (from -r ../testing/requirements.txt (line 8))
  Running setup.py egg_info for package South
....

But a later check revealed none of the package is installed properly. I cannot import the package, and none is found in the site-packages directory of my virtualenv. So what went wrong?

Answer #1

The Python 3 range() object doesn"t produce numbers immediately; it is a smart sequence object that produces numbers on demand. All it contains is your start, stop and step values, then as you iterate over the object the next integer is calculated each iteration.

The object also implements the object.__contains__ hook, and calculates if your number is part of its range. Calculating is a (near) constant time operation *. There is never a need to scan through all possible integers in the range.

From the range() object documentation:

The advantage of the range type over a regular list or tuple is that a range object will always take the same (small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and step values, calculating individual items and subranges as needed).

So at a minimum, your range() object would do:

class my_range:
    def __init__(self, start, stop=None, step=1, /):
        if stop is None:
            start, stop = 0, start
        self.start, self.stop, self.step = start, stop, step
        if step < 0:
            lo, hi, step = stop, start, -step
        else:
            lo, hi = start, stop
        self.length = 0 if lo > hi else ((hi - lo - 1) // step) + 1

    def __iter__(self):
        current = self.start
        if self.step < 0:
            while current > self.stop:
                yield current
                current += self.step
        else:
            while current < self.stop:
                yield current
                current += self.step

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        if i < 0:
            i += self.length
        if 0 <= i < self.length:
            return self.start + i * self.step
        raise IndexError("my_range object index out of range")

    def __contains__(self, num):
        if self.step < 0:
            if not (self.stop < num <= self.start):
                return False
        else:
            if not (self.start <= num < self.stop):
                return False
        return (num - self.start) % self.step == 0

This is still missing several things that a real range() supports (such as the .index() or .count() methods, hashing, equality testing, or slicing), but should give you an idea.

I also simplified the __contains__ implementation to only focus on integer tests; if you give a real range() object a non-integer value (including subclasses of int), a slow scan is initiated to see if there is a match, just as if you use a containment test against a list of all the contained values. This was done to continue to support other numeric types that just happen to support equality testing with integers but are not expected to support integer arithmetic as well. See the original Python issue that implemented the containment test.


* Near constant time because Python integers are unbounded and so math operations also grow in time as N grows, making this a O(log N) operation. Since it’s all executed in optimised C code and Python stores integer values in 30-bit chunks, you’d run out of memory before you saw any performance impact due to the size of the integers involved here.

Answer #2

Recommendation for beginners:

This is my personal recommendation for beginners: start by learning virtualenv and pip, tools which work with both Python 2 and 3 and in a variety of situations, and pick up other tools once you start needing them.

PyPI packages not in the standard library:

  • virtualenv is a very popular tool that creates isolated Python environments for Python libraries. If you"re not familiar with this tool, I highly recommend learning it, as it is a very useful tool, and I"ll be making comparisons to it for the rest of this answer.

It works by installing a bunch of files in a directory (eg: env/), and then modifying the PATH environment variable to prefix it with a custom bin directory (eg: env/bin/). An exact copy of the python or python3 binary is placed in this directory, but Python is programmed to look for libraries relative to its path first, in the environment directory. It"s not part of Python"s standard library, but is officially blessed by the PyPA (Python Packaging Authority). Once activated, you can install packages in the virtual environment using pip.

  • pyenv is used to isolate Python versions. For example, you may want to test your code against Python 2.7, 3.6, 3.7 and 3.8, so you"ll need a way to switch between them. Once activated, it prefixes the PATH environment variable with ~/.pyenv/shims, where there are special files matching the Python commands (python, pip). These are not copies of the Python-shipped commands; they are special scripts that decide on the fly which version of Python to run based on the PYENV_VERSION environment variable, or the .python-version file, or the ~/.pyenv/version file. pyenv also makes the process of downloading and installing multiple Python versions easier, using the command pyenv install.

  • pyenv-virtualenv is a plugin for pyenv by the same author as pyenv, to allow you to use pyenv and virtualenv at the same time conveniently. However, if you"re using Python 3.3 or later, pyenv-virtualenv will try to run python -m venv if it is available, instead of virtualenv. You can use virtualenv and pyenv together without pyenv-virtualenv, if you don"t want the convenience features.

  • virtualenvwrapper is a set of extensions to virtualenv (see docs). It gives you commands like mkvirtualenv, lssitepackages, and especially workon for switching between different virtualenv directories. This tool is especially useful if you want multiple virtualenv directories.

  • pyenv-virtualenvwrapper is a plugin for pyenv by the same author as pyenv, to conveniently integrate virtualenvwrapper into pyenv.

  • pipenv aims to combine Pipfile, pip and virtualenv into one command on the command-line. The virtualenv directory typically gets placed in ~/.local/share/virtualenvs/XXX, with XXX being a hash of the path of the project directory. This is different from virtualenv, where the directory is typically in the current working directory. pipenv is meant to be used when developing Python applications (as opposed to libraries). There are alternatives to pipenv, such as poetry, which I won"t list here since this question is only about the packages that are similarly named.

Standard library:

  • pyvenv (not to be confused with pyenv in the previous section) is a script shipped with Python 3 but deprecated in Python 3.6 as it had problems (not to mention the confusing name). In Python 3.6+, the exact equivalent is python3 -m venv.

  • venv is a package shipped with Python 3, which you can run using python3 -m venv (although for some reason some distros separate it out into a separate distro package, such as python3-venv on Ubuntu/Debian). It serves the same purpose as virtualenv, but only has a subset of its features (see a comparison here). virtualenv continues to be more popular than venv, especially since the former supports both Python 2 and 3.

Answer #3

You have four main options for converting types in pandas:

  1. to_numeric() - provides functionality to safely convert non-numeric types (e.g. strings) to a suitable numeric type. (See also to_datetime() and to_timedelta().)

  2. astype() - convert (almost) any type to (almost) any other type (even if it"s not necessarily sensible to do so). Also allows you to convert to categorial types (very useful).

  3. infer_objects() - a utility method to convert object columns holding Python objects to a pandas type if possible.

  4. convert_dtypes() - convert DataFrame columns to the "best possible" dtype that supports pd.NA (pandas" object to indicate a missing value).

Read on for more detailed explanations and usage of each of these methods.


1. to_numeric()

The best way to convert one or more columns of a DataFrame to numeric values is to use pandas.to_numeric().

This function will try to change non-numeric objects (such as strings) into integers or floating point numbers as appropriate.

Basic usage

The input to to_numeric() is a Series or a single column of a DataFrame.

>>> s = pd.Series(["8", 6, "7.5", 3, "0.9"]) # mixed string and numeric values
>>> s
0      8
1      6
2    7.5
3      3
4    0.9
dtype: object

>>> pd.to_numeric(s) # convert everything to float values
0    8.0
1    6.0
2    7.5
3    3.0
4    0.9
dtype: float64

As you can see, a new Series is returned. Remember to assign this output to a variable or column name to continue using it:

# convert Series
my_series = pd.to_numeric(my_series)

# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])

You can also use it to convert multiple columns of a DataFrame via the apply() method:

# convert all columns of DataFrame
df = df.apply(pd.to_numeric) # convert all columns of DataFrame

# convert just columns "a" and "b"
df[["a", "b"]] = df[["a", "b"]].apply(pd.to_numeric)

As long as your values can all be converted, that"s probably all you need.

Error handling

But what if some values can"t be converted to a numeric type?

to_numeric() also takes an errors keyword argument that allows you to force non-numeric values to be NaN, or simply ignore columns containing these values.

Here"s an example using a Series of strings s which has the object dtype:

>>> s = pd.Series(["1", "2", "4.7", "pandas", "10"])
>>> s
0         1
1         2
2       4.7
3    pandas
4        10
dtype: object

The default behaviour is to raise if it can"t convert a value. In this case, it can"t cope with the string "pandas":

>>> pd.to_numeric(s) # or pd.to_numeric(s, errors="raise")
ValueError: Unable to parse string

Rather than fail, we might want "pandas" to be considered a missing/bad numeric value. We can coerce invalid values to NaN as follows using the errors keyword argument:

>>> pd.to_numeric(s, errors="coerce")
0     1.0
1     2.0
2     4.7
3     NaN
4    10.0
dtype: float64

The third option for errors is just to ignore the operation if an invalid value is encountered:

>>> pd.to_numeric(s, errors="ignore")
# the original Series is returned untouched

This last option is particularly useful when you want to convert your entire DataFrame, but don"t not know which of our columns can be converted reliably to a numeric type. In that case just write:

df.apply(pd.to_numeric, errors="ignore")

The function will be applied to each column of the DataFrame. Columns that can be converted to a numeric type will be converted, while columns that cannot (e.g. they contain non-digit strings or dates) will be left alone.

Downcasting

By default, conversion with to_numeric() will give you either a int64 or float64 dtype (or whatever integer width is native to your platform).

That"s usually what you want, but what if you wanted to save some memory and use a more compact dtype, like float32, or int8?

to_numeric() gives you the option to downcast to either "integer", "signed", "unsigned", "float". Here"s an example for a simple series s of integer type:

>>> s = pd.Series([1, 2, -7])
>>> s
0    1
1    2
2   -7
dtype: int64

Downcasting to "integer" uses the smallest possible integer that can hold the values:

>>> pd.to_numeric(s, downcast="integer")
0    1
1    2
2   -7
dtype: int8

Downcasting to "float" similarly picks a smaller than normal floating type:

>>> pd.to_numeric(s, downcast="float")
0    1.0
1    2.0
2   -7.0
dtype: float32

2. astype()

The astype() method enables you to be explicit about the dtype you want your DataFrame or Series to have. It"s very versatile in that you can try and go from one type to the any other.

Basic usage

Just pick a type: you can use a NumPy dtype (e.g. np.int16), some Python types (e.g. bool), or pandas-specific types (like the categorical dtype).

Call the method on the object you want to convert and astype() will try and convert it for you:

# convert all DataFrame columns to the int64 dtype
df = df.astype(int)

# convert column "a" to int64 dtype and "b" to complex type
df = df.astype({"a": int, "b": complex})

# convert Series to float16 type
s = s.astype(np.float16)

# convert Series to Python strings
s = s.astype(str)

# convert Series to categorical type - see docs for more details
s = s.astype("category")

Notice I said "try" - if astype() does not know how to convert a value in the Series or DataFrame, it will raise an error. For example if you have a NaN or inf value you"ll get an error trying to convert it to an integer.

As of pandas 0.20.0, this error can be suppressed by passing errors="ignore". Your original object will be return untouched.

Be careful

astype() is powerful, but it will sometimes convert values "incorrectly". For example:

>>> s = pd.Series([1, 2, -7])
>>> s
0    1
1    2
2   -7
dtype: int64

These are small integers, so how about converting to an unsigned 8-bit type to save memory?

>>> s.astype(np.uint8)
0      1
1      2
2    249
dtype: uint8

The conversion worked, but the -7 was wrapped round to become 249 (i.e. 28 - 7)!

Trying to downcast using pd.to_numeric(s, downcast="unsigned") instead could help prevent this error.


3. infer_objects()

Version 0.21.0 of pandas introduced the method infer_objects() for converting columns of a DataFrame that have an object datatype to a more specific type (soft conversions).

For example, here"s a DataFrame with two columns of object type. One holds actual integers and the other holds strings representing integers:

>>> df = pd.DataFrame({"a": [7, 1, 5], "b": ["3","2","1"]}, dtype="object")
>>> df.dtypes
a    object
b    object
dtype: object

Using infer_objects(), you can change the type of column "a" to int64:

>>> df = df.infer_objects()
>>> df.dtypes
a     int64
b    object
dtype: object

Column "b" has been left alone since its values were strings, not integers. If you wanted to try and force the conversion of both columns to an integer type, you could use df.astype(int) instead.


4. convert_dtypes()

Version 1.0 and above includes a method convert_dtypes() to convert Series and DataFrame columns to the best possible dtype that supports the pd.NA missing value.

Here "best possible" means the type most suited to hold the values. For example, this a pandas integer type if all of the values are integers (or missing values): an object column of Python integer objects is converted to Int64, a column of NumPy int32 values will become the pandas dtype Int32.

With our object DataFrame df, we get the following result:

>>> df.convert_dtypes().dtypes                                             
a     Int64
b    string
dtype: object

Since column "a" held integer values, it was converted to the Int64 type (which is capable of holding missing values, unlike int64).

Column "b" contained string objects, so was changed to pandas" string dtype.

By default, this method will infer the type from object values in each column. We can change this by passing infer_objects=False:

>>> df.convert_dtypes(infer_objects=False).dtypes                          
a    object
b    string
dtype: object

Now column "a" remained an object column: pandas knows it can be described as an "integer" column (internally it ran infer_dtype) but didn"t infer exactly what dtype of integer it should have so did not convert it. Column "b" was again converted to "string" dtype as it was recognised as holding "string" values.

Answer #4

Since this question was asked in 2010, there has been real simplification in how to do simple multithreading with Python with map and pool.

The code below comes from an article/blog post that you should definitely check out (no affiliation) - Parallelism in one line: A Better Model for Day to Day Threading Tasks. I"ll summarize below - it ends up being just a few lines of code:

from multiprocessing.dummy import Pool as ThreadPool
pool = ThreadPool(4)
results = pool.map(my_function, my_array)

Which is the multithreaded version of:

results = []
for item in my_array:
    results.append(my_function(item))

Description

Map is a cool little function, and the key to easily injecting parallelism into your Python code. For those unfamiliar, map is something lifted from functional languages like Lisp. It is a function which maps another function over a sequence.

Map handles the iteration over the sequence for us, applies the function, and stores all of the results in a handy list at the end.

Enter image description here


Implementation

Parallel versions of the map function are provided by two libraries:multiprocessing, and also its little known, but equally fantastic step child:multiprocessing.dummy.

multiprocessing.dummy is exactly the same as multiprocessing module, but uses threads instead (an important distinction - use multiple processes for CPU-intensive tasks; threads for (and during) I/O):

multiprocessing.dummy replicates the API of multiprocessing, but is no more than a wrapper around the threading module.

import urllib2
from multiprocessing.dummy import Pool as ThreadPool

urls = [
  "http://www.python.org",
  "http://www.python.org/about/",
  "http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html",
  "http://www.python.org/doc/",
  "http://www.python.org/download/",
  "http://www.python.org/getit/",
  "http://www.python.org/community/",
  "https://wiki.python.org/moin/",
]

# Make the Pool of workers
pool = ThreadPool(4)

# Open the URLs in their own threads
# and return the results
results = pool.map(urllib2.urlopen, urls)

# Close the pool and wait for the work to finish
pool.close()
pool.join()

And the timing results:

Single thread:   14.4 seconds
       4 Pool:   3.1 seconds
       8 Pool:   1.4 seconds
      13 Pool:   1.3 seconds

Passing multiple arguments (works like this only in Python 3.3 and later):

To pass multiple arrays:

results = pool.starmap(function, zip(list_a, list_b))

Or to pass a constant and an array:

results = pool.starmap(function, zip(itertools.repeat(constant), list_a))

If you are using an earlier version of Python, you can pass multiple arguments via this workaround).

(Thanks to user136036 for the helpful comment.)

Answer #5

How to iterate over rows in a DataFrame in Pandas?

Answer: DON"T*!

Iteration in Pandas is an anti-pattern and is something you should only do when you have exhausted every other option. You should not use any function with "iter" in its name for more than a few thousand rows or you will have to get used to a lot of waiting.

Do you want to print a DataFrame? Use DataFrame.to_string().

Do you want to compute something? In that case, search for methods in this order (list modified from here):

  1. Vectorization
  2. Cython routines
  3. List Comprehensions (vanilla for loop)
  4. DataFrame.apply(): i)  Reductions that can be performed in Cython, ii) Iteration in Python space
  5. DataFrame.itertuples() and iteritems()
  6. DataFrame.iterrows()

iterrows and itertuples (both receiving many votes in answers to this question) should be used in very rare circumstances, such as generating row objects/nametuples for sequential processing, which is really the only thing these functions are useful for.

Appeal to Authority

The documentation page on iteration has a huge red warning box that says:

Iterating through pandas objects is generally slow. In many cases, iterating manually over the rows is not needed [...].

* It"s actually a little more complicated than "don"t". df.iterrows() is the correct answer to this question, but "vectorize your ops" is the better one. I will concede that there are circumstances where iteration cannot be avoided (for example, some operations where the result depends on the value computed for the previous row). However, it takes some familiarity with the library to know when. If you"re not sure whether you need an iterative solution, you probably don"t. PS: To know more about my rationale for writing this answer, skip to the very bottom.


Faster than Looping: Vectorization, Cython

A good number of basic operations and computations are "vectorised" by pandas (either through NumPy, or through Cythonized functions). This includes arithmetic, comparisons, (most) reductions, reshaping (such as pivoting), joins, and groupby operations. Look through the documentation on Essential Basic Functionality to find a suitable vectorised method for your problem.

If none exists, feel free to write your own using custom Cython extensions.


Next Best Thing: List Comprehensions*

List comprehensions should be your next port of call if 1) there is no vectorized solution available, 2) performance is important, but not important enough to go through the hassle of cythonizing your code, and 3) you"re trying to perform elementwise transformation on your code. There is a good amount of evidence to suggest that list comprehensions are sufficiently fast (and even sometimes faster) for many common Pandas tasks.

The formula is simple,

# Iterating over one column - `f` is some function that processes your data
result = [f(x) for x in df["col"]]
# Iterating over two columns, use `zip`
result = [f(x, y) for x, y in zip(df["col1"], df["col2"])]
# Iterating over multiple columns - same data type
result = [f(row[0], ..., row[n]) for row in df[["col1", ...,"coln"]].to_numpy()]
# Iterating over multiple columns - differing data type
result = [f(row[0], ..., row[n]) for row in zip(df["col1"], ..., df["coln"])]

If you can encapsulate your business logic into a function, you can use a list comprehension that calls it. You can make arbitrarily complex things work through the simplicity and speed of raw Python code.

Caveats

List comprehensions assume that your data is easy to work with - what that means is your data types are consistent and you don"t have NaNs, but this cannot always be guaranteed.

  1. The first one is more obvious, but when dealing with NaNs, prefer in-built pandas methods if they exist (because they have much better corner-case handling logic), or ensure your business logic includes appropriate NaN handling logic.
  2. When dealing with mixed data types you should iterate over zip(df["A"], df["B"], ...) instead of df[["A", "B"]].to_numpy() as the latter implicitly upcasts data to the most common type. As an example if A is numeric and B is string, to_numpy() will cast the entire array to string, which may not be what you want. Fortunately zipping your columns together is the most straightforward workaround to this.

*Your mileage may vary for the reasons outlined in the Caveats section above.


An Obvious Example

Let"s demonstrate the difference with a simple example of adding two pandas columns A + B. This is a vectorizable operaton, so it will be easy to contrast the performance of the methods discussed above.

Benchmarking code, for your reference. The line at the bottom measures a function written in numpandas, a style of Pandas that mixes heavily with NumPy to squeeze out maximum performance. Writing numpandas code should be avoided unless you know what you"re doing. Stick to the API where you can (i.e., prefer vec over vec_numpy).

I should mention, however, that it isn"t always this cut and dry. Sometimes the answer to "what is the best method for an operation" is "it depends on your data". My advice is to test out different approaches on your data before settling on one.


Further Reading

* Pandas string methods are "vectorized" in the sense that they are specified on the series but operate on each element. The underlying mechanisms are still iterative, because string operations are inherently hard to vectorize.


Why I Wrote this Answer

A common trend I notice from new users is to ask questions of the form "How can I iterate over my df to do X?". Showing code that calls iterrows() while doing something inside a for loop. Here is why. A new user to the library who has not been introduced to the concept of vectorization will likely envision the code that solves their problem as iterating over their data to do something. Not knowing how to iterate over a DataFrame, the first thing they do is Google it and end up here, at this question. They then see the accepted answer telling them how to, and they close their eyes and run this code without ever first questioning if iteration is not the right thing to do.

The aim of this answer is to help new users understand that iteration is not necessarily the solution to every problem, and that better, faster and more idiomatic solutions could exist, and that it is worth investing time in exploring them. I"m not trying to start a war of iteration vs. vectorization, but I want new users to be informed when developing solutions to their problems with this library.

Answer #6

In Python, what is the purpose of __slots__ and what are the cases one should avoid this?

TLDR:

The special attribute __slots__ allows you to explicitly state which instance attributes you expect your object instances to have, with the expected results:

  1. faster attribute access.
  2. space savings in memory.

The space savings is from

  1. Storing value references in slots instead of __dict__.
  2. Denying __dict__ and __weakref__ creation if parent classes deny them and you declare __slots__.

Quick Caveats

Small caveat, you should only declare a particular slot one time in an inheritance tree. For example:

class Base:
    __slots__ = "foo", "bar"

class Right(Base):
    __slots__ = "baz", 

class Wrong(Base):
    __slots__ = "foo", "bar", "baz"        # redundant foo and bar

Python doesn"t object when you get this wrong (it probably should), problems might not otherwise manifest, but your objects will take up more space than they otherwise should. Python 3.8:

>>> from sys import getsizeof
>>> getsizeof(Right()), getsizeof(Wrong())
(56, 72)

This is because the Base"s slot descriptor has a slot separate from the Wrong"s. This shouldn"t usually come up, but it could:

>>> w = Wrong()
>>> w.foo = "foo"
>>> Base.foo.__get__(w)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: foo
>>> Wrong.foo.__get__(w)
"foo"

The biggest caveat is for multiple inheritance - multiple "parent classes with nonempty slots" cannot be combined.

To accommodate this restriction, follow best practices: Factor out all but one or all parents" abstraction which their concrete class respectively and your new concrete class collectively will inherit from - giving the abstraction(s) empty slots (just like abstract base classes in the standard library).

See section on multiple inheritance below for an example.

Requirements:

  • To have attributes named in __slots__ to actually be stored in slots instead of a __dict__, a class must inherit from object (automatic in Python 3, but must be explicit in Python 2).

  • To prevent the creation of a __dict__, you must inherit from object and all classes in the inheritance must declare __slots__ and none of them can have a "__dict__" entry.

There are a lot of details if you wish to keep reading.

Why use __slots__: Faster attribute access.

The creator of Python, Guido van Rossum, states that he actually created __slots__ for faster attribute access.

It is trivial to demonstrate measurably significant faster access:

import timeit

class Foo(object): __slots__ = "foo",

class Bar(object): pass

slotted = Foo()
not_slotted = Bar()

def get_set_delete_fn(obj):
    def get_set_delete():
        obj.foo = "foo"
        obj.foo
        del obj.foo
    return get_set_delete

and

>>> min(timeit.repeat(get_set_delete_fn(slotted)))
0.2846834529991611
>>> min(timeit.repeat(get_set_delete_fn(not_slotted)))
0.3664822799983085

The slotted access is almost 30% faster in Python 3.5 on Ubuntu.

>>> 0.3664822799983085 / 0.2846834529991611
1.2873325658284342

In Python 2 on Windows I have measured it about 15% faster.

Why use __slots__: Memory Savings

Another purpose of __slots__ is to reduce the space in memory that each object instance takes up.

My own contribution to the documentation clearly states the reasons behind this:

The space saved over using __dict__ can be significant.

SQLAlchemy attributes a lot of memory savings to __slots__.

To verify this, using the Anaconda distribution of Python 2.7 on Ubuntu Linux, with guppy.hpy (aka heapy) and sys.getsizeof, the size of a class instance without __slots__ declared, and nothing else, is 64 bytes. That does not include the __dict__. Thank you Python for lazy evaluation again, the __dict__ is apparently not called into existence until it is referenced, but classes without data are usually useless. When called into existence, the __dict__ attribute is a minimum of 280 bytes additionally.

In contrast, a class instance with __slots__ declared to be () (no data) is only 16 bytes, and 56 total bytes with one item in slots, 64 with two.

For 64 bit Python, I illustrate the memory consumption in bytes in Python 2.7 and 3.6, for __slots__ and __dict__ (no slots defined) for each point where the dict grows in 3.6 (except for 0, 1, and 2 attributes):

       Python 2.7             Python 3.6
attrs  __slots__  __dict__*   __slots__  __dict__* | *(no slots defined)
none   16         56 + 272†   16         56 + 112† | †if __dict__ referenced
one    48         56 + 272    48         56 + 112
two    56         56 + 272    56         56 + 112
six    88         56 + 1040   88         56 + 152
11     128        56 + 1040   128        56 + 240
22     216        56 + 3344   216        56 + 408     
43     384        56 + 3344   384        56 + 752

So, in spite of smaller dicts in Python 3, we see how nicely __slots__ scale for instances to save us memory, and that is a major reason you would want to use __slots__.

Just for completeness of my notes, note that there is a one-time cost per slot in the class"s namespace of 64 bytes in Python 2, and 72 bytes in Python 3, because slots use data descriptors like properties, called "members".

>>> Foo.foo
<member "foo" of "Foo" objects>
>>> type(Foo.foo)
<class "member_descriptor">
>>> getsizeof(Foo.foo)
72

Demonstration of __slots__:

To deny the creation of a __dict__, you must subclass object. Everything subclasses object in Python 3, but in Python 2 you had to be explicit:

class Base(object): 
    __slots__ = ()

now:

>>> b = Base()
>>> b.a = "a"
Traceback (most recent call last):
  File "<pyshell#38>", line 1, in <module>
    b.a = "a"
AttributeError: "Base" object has no attribute "a"

Or subclass another class that defines __slots__

class Child(Base):
    __slots__ = ("a",)

and now:

c = Child()
c.a = "a"

but:

>>> c.b = "b"
Traceback (most recent call last):
  File "<pyshell#42>", line 1, in <module>
    c.b = "b"
AttributeError: "Child" object has no attribute "b"

To allow __dict__ creation while subclassing slotted objects, just add "__dict__" to the __slots__ (note that slots are ordered, and you shouldn"t repeat slots that are already in parent classes):

class SlottedWithDict(Child): 
    __slots__ = ("__dict__", "b")

swd = SlottedWithDict()
swd.a = "a"
swd.b = "b"
swd.c = "c"

and

>>> swd.__dict__
{"c": "c"}

Or you don"t even need to declare __slots__ in your subclass, and you will still use slots from the parents, but not restrict the creation of a __dict__:

class NoSlots(Child): pass
ns = NoSlots()
ns.a = "a"
ns.b = "b"

And:

>>> ns.__dict__
{"b": "b"}

However, __slots__ may cause problems for multiple inheritance:

class BaseA(object): 
    __slots__ = ("a",)

class BaseB(object): 
    __slots__ = ("b",)

Because creating a child class from parents with both non-empty slots fails:

>>> class Child(BaseA, BaseB): __slots__ = ()
Traceback (most recent call last):
  File "<pyshell#68>", line 1, in <module>
    class Child(BaseA, BaseB): __slots__ = ()
TypeError: Error when calling the metaclass bases
    multiple bases have instance lay-out conflict

If you run into this problem, You could just remove __slots__ from the parents, or if you have control of the parents, give them empty slots, or refactor to abstractions:

from abc import ABC

class AbstractA(ABC):
    __slots__ = ()

class BaseA(AbstractA): 
    __slots__ = ("a",)

class AbstractB(ABC):
    __slots__ = ()

class BaseB(AbstractB): 
    __slots__ = ("b",)

class Child(AbstractA, AbstractB): 
    __slots__ = ("a", "b")

c = Child() # no problem!

Add "__dict__" to __slots__ to get dynamic assignment:

class Foo(object):
    __slots__ = "bar", "baz", "__dict__"

and now:

>>> foo = Foo()
>>> foo.boink = "boink"

So with "__dict__" in slots we lose some of the size benefits with the upside of having dynamic assignment and still having slots for the names we do expect.

When you inherit from an object that isn"t slotted, you get the same sort of semantics when you use __slots__ - names that are in __slots__ point to slotted values, while any other values are put in the instance"s __dict__.

Avoiding __slots__ because you want to be able to add attributes on the fly is actually not a good reason - just add "__dict__" to your __slots__ if this is required.

You can similarly add __weakref__ to __slots__ explicitly if you need that feature.

Set to empty tuple when subclassing a namedtuple:

The namedtuple builtin make immutable instances that are very lightweight (essentially, the size of tuples) but to get the benefits, you need to do it yourself if you subclass them:

from collections import namedtuple
class MyNT(namedtuple("MyNT", "bar baz")):
    """MyNT is an immutable and lightweight object"""
    __slots__ = ()

usage:

>>> nt = MyNT("bar", "baz")
>>> nt.bar
"bar"
>>> nt.baz
"baz"

And trying to assign an unexpected attribute raises an AttributeError because we have prevented the creation of __dict__:

>>> nt.quux = "quux"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: "MyNT" object has no attribute "quux"

You can allow __dict__ creation by leaving off __slots__ = (), but you can"t use non-empty __slots__ with subtypes of tuple.

Biggest Caveat: Multiple inheritance

Even when non-empty slots are the same for multiple parents, they cannot be used together:

class Foo(object): 
    __slots__ = "foo", "bar"
class Bar(object):
    __slots__ = "foo", "bar" # alas, would work if empty, i.e. ()

>>> class Baz(Foo, Bar): pass
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Error when calling the metaclass bases
    multiple bases have instance lay-out conflict

Using an empty __slots__ in the parent seems to provide the most flexibility, allowing the child to choose to prevent or allow (by adding "__dict__" to get dynamic assignment, see section above) the creation of a __dict__:

class Foo(object): __slots__ = ()
class Bar(object): __slots__ = ()
class Baz(Foo, Bar): __slots__ = ("foo", "bar")
b = Baz()
b.foo, b.bar = "foo", "bar"

You don"t have to have slots - so if you add them, and remove them later, it shouldn"t cause any problems.

Going out on a limb here: If you"re composing mixins or using abstract base classes, which aren"t intended to be instantiated, an empty __slots__ in those parents seems to be the best way to go in terms of flexibility for subclassers.

To demonstrate, first, let"s create a class with code we"d like to use under multiple inheritance

class AbstractBase:
    __slots__ = ()
    def __init__(self, a, b):
        self.a = a
        self.b = b
    def __repr__(self):
        return f"{type(self).__name__}({repr(self.a)}, {repr(self.b)})"

We could use the above directly by inheriting and declaring the expected slots:

class Foo(AbstractBase):
    __slots__ = "a", "b"

But we don"t care about that, that"s trivial single inheritance, we need another class we might also inherit from, maybe with a noisy attribute:

class AbstractBaseC:
    __slots__ = ()
    @property
    def c(self):
        print("getting c!")
        return self._c
    @c.setter
    def c(self, arg):
        print("setting c!")
        self._c = arg

Now if both bases had nonempty slots, we couldn"t do the below. (In fact, if we wanted, we could have given AbstractBase nonempty slots a and b, and left them out of the below declaration - leaving them in would be wrong):

class Concretion(AbstractBase, AbstractBaseC):
    __slots__ = "a b _c".split()

And now we have functionality from both via multiple inheritance, and can still deny __dict__ and __weakref__ instantiation:

>>> c = Concretion("a", "b")
>>> c.c = c
setting c!
>>> c.c
getting c!
Concretion("a", "b")
>>> c.d = "d"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: "Concretion" object has no attribute "d"

Other cases to avoid slots:

  • Avoid them when you want to perform __class__ assignment with another class that doesn"t have them (and you can"t add them) unless the slot layouts are identical. (I am very interested in learning who is doing this and why.)
  • Avoid them if you want to subclass variable length builtins like long, tuple, or str, and you want to add attributes to them.
  • Avoid them if you insist on providing default values via class attributes for instance variables.

You may be able to tease out further caveats from the rest of the __slots__ documentation (the 3.7 dev docs are the most current), which I have made significant recent contributions to.

Critiques of other answers

The current top answers cite outdated information and are quite hand-wavy and miss the mark in some important ways.

Do not "only use __slots__ when instantiating lots of objects"

I quote:

"You would want to use __slots__ if you are going to instantiate a lot (hundreds, thousands) of objects of the same class."

Abstract Base Classes, for example, from the collections module, are not instantiated, yet __slots__ are declared for them.

Why?

If a user wishes to deny __dict__ or __weakref__ creation, those things must not be available in the parent classes.

__slots__ contributes to reusability when creating interfaces or mixins.

It is true that many Python users aren"t writing for reusability, but when you are, having the option to deny unnecessary space usage is valuable.

__slots__ doesn"t break pickling

When pickling a slotted object, you may find it complains with a misleading TypeError:

>>> pickle.loads(pickle.dumps(f))
TypeError: a class that defines __slots__ without defining __getstate__ cannot be pickled

This is actually incorrect. This message comes from the oldest protocol, which is the default. You can select the latest protocol with the -1 argument. In Python 2.7 this would be 2 (which was introduced in 2.3), and in 3.6 it is 4.

>>> pickle.loads(pickle.dumps(f, -1))
<__main__.Foo object at 0x1129C770>

in Python 2.7:

>>> pickle.loads(pickle.dumps(f, 2))
<__main__.Foo object at 0x1129C770>

in Python 3.6

>>> pickle.loads(pickle.dumps(f, 4))
<__main__.Foo object at 0x1129C770>

So I would keep this in mind, as it is a solved problem.

Critique of the (until Oct 2, 2016) accepted answer

The first paragraph is half short explanation, half predictive. Here"s the only part that actually answers the question

The proper use of __slots__ is to save space in objects. Instead of having a dynamic dict that allows adding attributes to objects at anytime, there is a static structure which does not allow additions after creation. This saves the overhead of one dict for every object that uses slots

The second half is wishful thinking, and off the mark:

While this is sometimes a useful optimization, it would be completely unnecessary if the Python interpreter was dynamic enough so that it would only require the dict when there actually were additions to the object.

Python actually does something similar to this, only creating the __dict__ when it is accessed, but creating lots of objects with no data is fairly ridiculous.

The second paragraph oversimplifies and misses actual reasons to avoid __slots__. The below is not a real reason to avoid slots (for actual reasons, see the rest of my answer above.):

They change the behavior of the objects that have slots in a way that can be abused by control freaks and static typing weenies.

It then goes on to discuss other ways of accomplishing that perverse goal with Python, not discussing anything to do with __slots__.

The third paragraph is more wishful thinking. Together it is mostly off-the-mark content that the answerer didn"t even author and contributes to ammunition for critics of the site.

Memory usage evidence

Create some normal objects and slotted objects:

>>> class Foo(object): pass
>>> class Bar(object): __slots__ = ()

Instantiate a million of them:

>>> foos = [Foo() for f in xrange(1000000)]
>>> bars = [Bar() for b in xrange(1000000)]

Inspect with guppy.hpy().heap():

>>> guppy.hpy().heap()
Partition of a set of 2028259 objects. Total size = 99763360 bytes.
 Index  Count   %     Size   % Cumulative  % Kind (class / dict of class)
     0 1000000  49 64000000  64  64000000  64 __main__.Foo
     1     169   0 16281480  16  80281480  80 list
     2 1000000  49 16000000  16  96281480  97 __main__.Bar
     3   12284   1   987472   1  97268952  97 str
...

Access the regular objects and their __dict__ and inspect again:

>>> for f in foos:
...     f.__dict__
>>> guppy.hpy().heap()
Partition of a set of 3028258 objects. Total size = 379763480 bytes.
 Index  Count   %      Size    % Cumulative  % Kind (class / dict of class)
     0 1000000  33 280000000  74 280000000  74 dict of __main__.Foo
     1 1000000  33  64000000  17 344000000  91 __main__.Foo
     2     169   0  16281480   4 360281480  95 list
     3 1000000  33  16000000   4 376281480  99 __main__.Bar
     4   12284   0    987472   0 377268952  99 str
...

This is consistent with the history of Python, from Unifying types and classes in Python 2.2

If you subclass a built-in type, extra space is automatically added to the instances to accomodate __dict__ and __weakrefs__. (The __dict__ is not initialized until you use it though, so you shouldn"t worry about the space occupied by an empty dictionary for each instance you create.) If you don"t need this extra space, you can add the phrase "__slots__ = []" to your class.

Answer #7

os.listdir() - list in the current directory

With listdir in os module you get the files and the folders in the current dir

 import os
 arr = os.listdir()
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

Looking in a directory

arr = os.listdir("c:\files")

glob from glob

with glob you can specify a type of file to list like this

import glob

txtfiles = []
for file in glob.glob("*.txt"):
    txtfiles.append(file)

glob in a list comprehension

mylist = [f for f in glob.glob("*.txt")]

get the full path of only files in the current directory

import os
from os import listdir
from os.path import isfile, join

cwd = os.getcwd()
onlyfiles = [os.path.join(cwd, f) for f in os.listdir(cwd) if 
os.path.isfile(os.path.join(cwd, f))]
print(onlyfiles) 

["G:\getfilesname\getfilesname.py", "G:\getfilesname\example.txt"]

Getting the full path name with os.path.abspath

You get the full path in return

 import os
 files_path = [os.path.abspath(x) for x in os.listdir()]
 print(files_path)
 
 ["F:\documentiapplications.txt", "F:\documenticollections.txt"]

Walk: going through sub directories

os.walk returns the root, the directories list and the files list, that is why I unpacked them in r, d, f in the for loop; it, then, looks for other files and directories in the subfolders of the root and so on until there are no subfolders.

import os

# Getting the current work directory (cwd)
thisdir = os.getcwd()

# r=root, d=directories, f = files
for r, d, f in os.walk(thisdir):
    for file in f:
        if file.endswith(".docx"):
            print(os.path.join(r, file))

os.listdir(): get files in the current directory (Python 2)

In Python 2, if you want the list of the files in the current directory, you have to give the argument as "." or os.getcwd() in the os.listdir method.

 import os
 arr = os.listdir(".")
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

To go up in the directory tree

# Method 1
x = os.listdir("..")

# Method 2
x= os.listdir("/")

Get files: os.listdir() in a particular directory (Python 2 and 3)

 import os
 arr = os.listdir("F:\python")
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

Get files of a particular subdirectory with os.listdir()

import os

x = os.listdir("./content")

os.walk(".") - current directory

 import os
 arr = next(os.walk("."))[2]
 print(arr)
 
 >>> ["5bs_Turismo1.pdf", "5bs_Turismo1.pptx", "esperienza.txt"]

next(os.walk(".")) and os.path.join("dir", "file")

 import os
 arr = []
 for d,r,f in next(os.walk("F:\_python")):
     for file in f:
         arr.append(os.path.join(r,file))

 for f in arr:
     print(files)

>>> F:\_python\dict_class.py
>>> F:\_python\programmi.txt

next(os.walk("F:\") - get the full path - list comprehension

 [os.path.join(r,file) for r,d,f in next(os.walk("F:\_python")) for file in f]
 
 >>> ["F:\_python\dict_class.py", "F:\_python\programmi.txt"]

os.walk - get full path - all files in sub dirs**

x = [os.path.join(r,file) for r,d,f in os.walk("F:\_python") for file in f]
print(x)

>>> ["F:\_python\dict.py", "F:\_python\progr.txt", "F:\_python\readl.py"]

os.listdir() - get only txt files

 arr_txt = [x for x in os.listdir() if x.endswith(".txt")]
 print(arr_txt)
 
 >>> ["work.txt", "3ebooks.txt"]

Using glob to get the full path of the files

If I should need the absolute path of the files:

from path import path
from glob import glob
x = [path(f).abspath() for f in glob("F:\*.txt")]
for f in x:
    print(f)

>>> F:acquistionline.txt
>>> F:acquisti_2018.txt
>>> F:ootstrap_jquery_ecc.txt

Using os.path.isfile to avoid directories in the list

import os.path
listOfFiles = [f for f in os.listdir() if os.path.isfile(f)]
print(listOfFiles)

>>> ["a simple game.py", "data.txt", "decorator.py"]

Using pathlib from Python 3.4

import pathlib

flist = []
for p in pathlib.Path(".").iterdir():
    if p.is_file():
        print(p)
        flist.append(p)

 >>> error.PNG
 >>> exemaker.bat
 >>> guiprova.mp3
 >>> setup.py
 >>> speak_gui2.py
 >>> thumb.PNG

With list comprehension:

flist = [p for p in pathlib.Path(".").iterdir() if p.is_file()]

Alternatively, use pathlib.Path() instead of pathlib.Path(".")

Use glob method in pathlib.Path()

import pathlib

py = pathlib.Path().glob("*.py")
for file in py:
    print(file)

>>> stack_overflow_list.py
>>> stack_overflow_list_tkinter.py

Get all and only files with os.walk

import os
x = [i[2] for i in os.walk(".")]
y=[]
for t in x:
    for f in t:
        y.append(f)
print(y)

>>> ["append_to_list.py", "data.txt", "data1.txt", "data2.txt", "data_180617", "os_walk.py", "READ2.py", "read_data.py", "somma_defaltdic.py", "substitute_words.py", "sum_data.py", "data.txt", "data1.txt", "data_180617"]

Get only files with next and walk in a directory

 import os
 x = next(os.walk("F://python"))[2]
 print(x)
 
 >>> ["calculator.bat","calculator.py"]

Get only directories with next and walk in a directory

 import os
 next(os.walk("F://python"))[1] # for the current dir use (".")
 
 >>> ["python3","others"]

Get all the subdir names with walk

for r,d,f in os.walk("F:\_python"):
    for dirs in d:
        print(dirs)

>>> .vscode
>>> pyexcel
>>> pyschool.py
>>> subtitles
>>> _metaprogramming
>>> .ipynb_checkpoints

os.scandir() from Python 3.5 and greater

import os
x = [f.name for f in os.scandir() if f.is_file()]
print(x)

>>> ["calculator.bat","calculator.py"]

# Another example with scandir (a little variation from docs.python.org)
# This one is more efficient than os.listdir.
# In this case, it shows the files only in the current directory
# where the script is executed.

import os
with os.scandir() as i:
    for entry in i:
        if entry.is_file():
            print(entry.name)

>>> ebookmaker.py
>>> error.PNG
>>> exemaker.bat
>>> guiprova.mp3
>>> setup.py
>>> speakgui4.py
>>> speak_gui2.py
>>> speak_gui3.py
>>> thumb.PNG

Examples:

Ex. 1: How many files are there in the subdirectories?

In this example, we look for the number of files that are included in all the directory and its subdirectories.

import os

def count(dir, counter=0):
    "returns number of files in dir and subdirs"
    for pack in os.walk(dir):
        for f in pack[2]:
            counter += 1
    return dir + " : " + str(counter) + "files"

print(count("F:\python"))

>>> "F:\python" : 12057 files"

Ex.2: How to copy all files from a directory to another?

A script to make order in your computer finding all files of a type (default: pptx) and copying them in a new folder.

import os
import shutil
from path import path

destination = "F:\file_copied"
# os.makedirs(destination)

def copyfile(dir, filetype="pptx", counter=0):
    "Searches for pptx (or other - pptx is the default) files and copies them"
    for pack in os.walk(dir):
        for f in pack[2]:
            if f.endswith(filetype):
                fullpath = pack[0] + "\" + f
                print(fullpath)
                shutil.copy(fullpath, destination)
                counter += 1
    if counter > 0:
        print("-" * 30)
        print("	==> Found in: `" + dir + "` : " + str(counter) + " files
")

for dir in os.listdir():
    "searches for folders that starts with `_`"
    if dir[0] == "_":
        # copyfile(dir, filetype="pdf")
        copyfile(dir, filetype="txt")


>>> _compiti18Compito Contabilità 1conti.txt
>>> _compiti18Compito Contabilità 1modula4.txt
>>> _compiti18Compito Contabilità 1moduloa4.txt
>>> ------------------------
>>> ==> Found in: `_compiti18` : 3 files

Ex. 3: How to get all the files in a txt file

In case you want to create a txt file with all the file names:

import os
mylist = ""
with open("filelist.txt", "w", encoding="utf-8") as file:
    for eachfile in os.listdir():
        mylist += eachfile + "
"
    file.write(mylist)

Example: txt with all the files of an hard drive

"""
We are going to save a txt file with all the files in your directory.
We will use the function walk()
"""

import os

# see all the methods of os
# print(*dir(os), sep=", ")
listafile = []
percorso = []
with open("lista_file.txt", "w", encoding="utf-8") as testo:
    for root, dirs, files in os.walk("D:\"):
        for file in files:
            listafile.append(file)
            percorso.append(root + "\" + file)
            testo.write(file + "
")
listafile.sort()
print("N. of files", len(listafile))
with open("lista_file_ordinata.txt", "w", encoding="utf-8") as testo_ordinato:
    for file in listafile:
        testo_ordinato.write(file + "
")

with open("percorso.txt", "w", encoding="utf-8") as file_percorso:
    for file in percorso:
        file_percorso.write(file + "
")

os.system("lista_file.txt")
os.system("lista_file_ordinata.txt")
os.system("percorso.txt")

All the file of C: in one text file

This is a shorter version of the previous code. Change the folder where to start finding the files if you need to start from another position. This code generate a 50 mb on text file on my computer with something less then 500.000 lines with files with the complete path.

import os

with open("file.txt", "w", encoding="utf-8") as filewrite:
    for r, d, f in os.walk("C:\"):
        for file in f:
            filewrite.write(f"{r + file}
")

How to write a file with all paths in a folder of a type

With this function you can create a txt file that will have the name of a type of file that you look for (ex. pngfile.txt) with all the full path of all the files of that type. It can be useful sometimes, I think.

import os

def searchfiles(extension=".ttf", folder="H:\"):
    "Create a txt file with all the file of a type"
    with open(extension[1:] + "file.txt", "w", encoding="utf-8") as filewrite:
        for r, d, f in os.walk(folder):
            for file in f:
                if file.endswith(extension):
                    filewrite.write(f"{r + file}
")

# looking for png file (fonts) in the hard disk H:
searchfiles(".png", "H:\")

>>> H:4bs_18Dolphins5.png
>>> H:4bs_18Dolphins6.png
>>> H:4bs_18Dolphins7.png
>>> H:5_18marketing htmlassetsimageslogo2.png
>>> H:7z001.png
>>> H:7z002.png

(New) Find all files and open them with tkinter GUI

I just wanted to add in this 2019 a little app to search for all files in a dir and be able to open them by doubleclicking on the name of the file in the list. enter image description here

import tkinter as tk
import os

def searchfiles(extension=".txt", folder="H:\"):
    "insert all files in the listbox"
    for r, d, f in os.walk(folder):
        for file in f:
            if file.endswith(extension):
                lb.insert(0, r + "\" + file)

def open_file():
    os.startfile(lb.get(lb.curselection()[0]))

root = tk.Tk()
root.geometry("400x400")
bt = tk.Button(root, text="Search", command=lambda:searchfiles(".png", "H:\"))
bt.pack()
lb = tk.Listbox(root)
lb.pack(fill="both", expand=1)
lb.bind("<Double-Button>", lambda x: open_file())
root.mainloop()

Answer #8

This is the behaviour to adopt when the referenced object is deleted. It is not specific to Django; this is an SQL standard. Although Django has its own implementation on top of SQL. (1)

There are seven possible actions to take when such event occurs:

  • CASCADE: When the referenced object is deleted, also delete the objects that have references to it (when you remove a blog post for instance, you might want to delete comments as well). SQL equivalent: CASCADE.
  • PROTECT: Forbid the deletion of the referenced object. To delete it you will have to delete all objects that reference it manually. SQL equivalent: RESTRICT.
  • RESTRICT: (introduced in Django 3.1) Similar behavior as PROTECT that matches SQL"s RESTRICT more accurately. (See django documentation example)
  • SET_NULL: Set the reference to NULL (requires the field to be nullable). For instance, when you delete a User, you might want to keep the comments he posted on blog posts, but say it was posted by an anonymous (or deleted) user. SQL equivalent: SET NULL.
  • SET_DEFAULT: Set the default value. SQL equivalent: SET DEFAULT.
  • SET(...): Set a given value. This one is not part of the SQL standard and is entirely handled by Django.
  • DO_NOTHING: Probably a very bad idea since this would create integrity issues in your database (referencing an object that actually doesn"t exist). SQL equivalent: NO ACTION. (2)

Source: Django documentation

See also the documentation of PostgreSQL for instance.

In most cases, CASCADE is the expected behaviour, but for every ForeignKey, you should always ask yourself what is the expected behaviour in this situation. PROTECT and SET_NULL are often useful. Setting CASCADE where it should not, can potentially delete all of your database in cascade, by simply deleting a single user.


Additional note to clarify cascade direction

It"s funny to notice that the direction of the CASCADE action is not clear to many people. Actually, it"s funny to notice that only the CASCADE action is not clear. I understand the cascade behavior might be confusing, however you must think that it is the same direction as any other action. Thus, if you feel that CASCADE direction is not clear to you, it actually means that on_delete behavior is not clear to you.

In your database, a foreign key is basically represented by an integer field which value is the primary key of the foreign object. Let"s say you have an entry comment_A, which has a foreign key to an entry article_B. If you delete the entry comment_A, everything is fine. article_B used to live without comment_A and don"t bother if it"s deleted. However, if you delete article_B, then comment_A panics! It never lived without article_B and needs it, and it"s part of its attributes (article=article_B, but what is article_B???). This is where on_delete steps in, to determine how to resolve this integrity error, either by saying:

  • "No! Please! Don"t! I can"t live without you!" (which is said PROTECT or RESTRICT in Django/SQL)
  • "All right, if I"m not yours, then I"m nobody"s" (which is said SET_NULL)
  • "Good bye world, I can"t live without article_B" and commit suicide (this is the CASCADE behavior).
  • "It"s OK, I"ve got spare lover, and I"ll reference article_C from now" (SET_DEFAULT, or even SET(...)).
  • "I can"t face reality, and I"ll keep calling your name even if that"s the only thing left to me!" (DO_NOTHING)

I hope it makes cascade direction clearer. :)


Footnotes

(1) Django has its own implementation on top of SQL. And, as mentioned by @JoeMjr2 in the comments below, Django will not create the SQL constraints. If you want the constraints to be ensured by your database (for instance, if your database is used by another application, or if you hang in the database console from time to time), you might want to set the related constraints manually yourself. There is an open ticket to add support for database-level on delete constrains in Django.

(2) Actually, there is one case where DO_NOTHING can be useful: If you want to skip Django"s implementation and implement the constraint yourself at the database-level.

Answer #9

Label vs. Location

The main distinction between the two methods is:

  • loc gets rows (and/or columns) with particular labels.

  • iloc gets rows (and/or columns) at integer locations.

To demonstrate, consider a series s of characters with a non-monotonic integer index:

>>> s = pd.Series(list("abcdef"), index=[49, 48, 47, 0, 1, 2]) 
49    a
48    b
47    c
0     d
1     e
2     f

>>> s.loc[0]    # value at index label 0
"d"

>>> s.iloc[0]   # value at index location 0
"a"

>>> s.loc[0:1]  # rows at index labels between 0 and 1 (inclusive)
0    d
1    e

>>> s.iloc[0:1] # rows at index location between 0 and 1 (exclusive)
49    a

Here are some of the differences/similarities between s.loc and s.iloc when passed various objects:

<object> description s.loc[<object>] s.iloc[<object>]
0 single item Value at index label 0 (the string "d") Value at index location 0 (the string "a")
0:1 slice Two rows (labels 0 and 1) One row (first row at location 0)
1:47 slice with out-of-bounds end Zero rows (empty Series) Five rows (location 1 onwards)
1:47:-1 slice with negative step three rows (labels 1 back to 47) Zero rows (empty Series)
[2, 0] integer list Two rows with given labels Two rows with given locations
s > "e" Bool series (indicating which values have the property) One row (containing "f") NotImplementedError
(s>"e").values Bool array One row (containing "f") Same as loc
999 int object not in index KeyError IndexError (out of bounds)
-1 int object not in index KeyError Returns last value in s
lambda x: x.index[3] callable applied to series (here returning 3rd item in index) s.loc[s.index[3]] s.iloc[s.index[3]]

loc"s label-querying capabilities extend well-beyond integer indexes and it"s worth highlighting a couple of additional examples.

Here"s a Series where the index contains string objects:

>>> s2 = pd.Series(s.index, index=s.values)
>>> s2
a    49
b    48
c    47
d     0
e     1
f     2

Since loc is label-based, it can fetch the first value in the Series using s2.loc["a"]. It can also slice with non-integer objects:

>>> s2.loc["c":"e"]  # all rows lying between "c" and "e" (inclusive)
c    47
d     0
e     1

For DateTime indexes, we don"t need to pass the exact date/time to fetch by label. For example:

>>> s3 = pd.Series(list("abcde"), pd.date_range("now", periods=5, freq="M")) 
>>> s3
2021-01-31 16:41:31.879768    a
2021-02-28 16:41:31.879768    b
2021-03-31 16:41:31.879768    c
2021-04-30 16:41:31.879768    d
2021-05-31 16:41:31.879768    e

Then to fetch the row(s) for March/April 2021 we only need:

>>> s3.loc["2021-03":"2021-04"]
2021-03-31 17:04:30.742316    c
2021-04-30 17:04:30.742316    d

Rows and Columns

loc and iloc work the same way with DataFrames as they do with Series. It"s useful to note that both methods can address columns and rows together.

When given a tuple, the first element is used to index the rows and, if it exists, the second element is used to index the columns.

Consider the DataFrame defined below:

>>> import numpy as np 
>>> df = pd.DataFrame(np.arange(25).reshape(5, 5),  
                      index=list("abcde"), 
                      columns=["x","y","z", 8, 9])
>>> df
    x   y   z   8   9
a   0   1   2   3   4
b   5   6   7   8   9
c  10  11  12  13  14
d  15  16  17  18  19
e  20  21  22  23  24

Then for example:

>>> df.loc["c": , :"z"]  # rows "c" and onwards AND columns up to "z"
    x   y   z
c  10  11  12
d  15  16  17
e  20  21  22

>>> df.iloc[:, 3]        # all rows, but only the column at index location 3
a     3
b     8
c    13
d    18
e    23

Sometimes we want to mix label and positional indexing methods for the rows and columns, somehow combining the capabilities of loc and iloc.

For example, consider the following DataFrame. How best to slice the rows up to and including "c" and take the first four columns?

>>> import numpy as np 
>>> df = pd.DataFrame(np.arange(25).reshape(5, 5),  
                      index=list("abcde"), 
                      columns=["x","y","z", 8, 9])
>>> df
    x   y   z   8   9
a   0   1   2   3   4
b   5   6   7   8   9
c  10  11  12  13  14
d  15  16  17  18  19
e  20  21  22  23  24

We can achieve this result using iloc and the help of another method:

>>> df.iloc[:df.index.get_loc("c") + 1, :4]
    x   y   z   8
a   0   1   2   3
b   5   6   7   8
c  10  11  12  13

get_loc() is an index method meaning "get the position of the label in this index". Note that since slicing with iloc is exclusive of its endpoint, we must add 1 to this value if we want row "c" as well.

Answer #10

Quick Answer:

The simplest way to get row counts per group is by calling .size(), which returns a Series:

df.groupby(["col1","col2"]).size()


Usually you want this result as a DataFrame (instead of a Series) so you can do:

df.groupby(["col1", "col2"]).size().reset_index(name="counts")


If you want to find out how to calculate the row counts and other statistics for each group continue reading below.


Detailed example:

Consider the following example dataframe:

In [2]: df
Out[2]: 
  col1 col2  col3  col4  col5  col6
0    A    B  0.20 -0.61 -0.49  1.49
1    A    B -1.53 -1.01 -0.39  1.82
2    A    B -0.44  0.27  0.72  0.11
3    A    B  0.28 -1.32  0.38  0.18
4    C    D  0.12  0.59  0.81  0.66
5    C    D -0.13 -1.65 -1.64  0.50
6    C    D -1.42 -0.11 -0.18 -0.44
7    E    F -0.00  1.42 -0.26  1.17
8    E    F  0.91 -0.47  1.35 -0.34
9    G    H  1.48 -0.63 -1.14  0.17

First let"s use .size() to get the row counts:

In [3]: df.groupby(["col1", "col2"]).size()
Out[3]: 
col1  col2
A     B       4
C     D       3
E     F       2
G     H       1
dtype: int64

Then let"s use .size().reset_index(name="counts") to get the row counts:

In [4]: df.groupby(["col1", "col2"]).size().reset_index(name="counts")
Out[4]: 
  col1 col2  counts
0    A    B       4
1    C    D       3
2    E    F       2
3    G    H       1


Including results for more statistics

When you want to calculate statistics on grouped data, it usually looks like this:

In [5]: (df
   ...: .groupby(["col1", "col2"])
   ...: .agg({
   ...:     "col3": ["mean", "count"], 
   ...:     "col4": ["median", "min", "count"]
   ...: }))
Out[5]: 
            col4                  col3      
          median   min count      mean count
col1 col2                                   
A    B    -0.810 -1.32     4 -0.372500     4
C    D    -0.110 -1.65     3 -0.476667     3
E    F     0.475 -0.47     2  0.455000     2
G    H    -0.630 -0.63     1  1.480000     1

The result above is a little annoying to deal with because of the nested column labels, and also because row counts are on a per column basis.

To gain more control over the output I usually split the statistics into individual aggregations that I then combine using join. It looks like this:

In [6]: gb = df.groupby(["col1", "col2"])
   ...: counts = gb.size().to_frame(name="counts")
   ...: (counts
   ...:  .join(gb.agg({"col3": "mean"}).rename(columns={"col3": "col3_mean"}))
   ...:  .join(gb.agg({"col4": "median"}).rename(columns={"col4": "col4_median"}))
   ...:  .join(gb.agg({"col4": "min"}).rename(columns={"col4": "col4_min"}))
   ...:  .reset_index()
   ...: )
   ...: 
Out[6]: 
  col1 col2  counts  col3_mean  col4_median  col4_min
0    A    B       4  -0.372500       -0.810     -1.32
1    C    D       3  -0.476667       -0.110     -1.65
2    E    F       2   0.455000        0.475     -0.47
3    G    H       1   1.480000       -0.630     -0.63



Footnotes

The code used to generate the test data is shown below:

In [1]: import numpy as np
   ...: import pandas as pd 
   ...: 
   ...: keys = np.array([
   ...:         ["A", "B"],
   ...:         ["A", "B"],
   ...:         ["A", "B"],
   ...:         ["A", "B"],
   ...:         ["C", "D"],
   ...:         ["C", "D"],
   ...:         ["C", "D"],
   ...:         ["E", "F"],
   ...:         ["E", "F"],
   ...:         ["G", "H"] 
   ...:         ])
   ...: 
   ...: df = pd.DataFrame(
   ...:     np.hstack([keys,np.random.randn(10,4).round(2)]), 
   ...:     columns = ["col1", "col2", "col3", "col4", "col5", "col6"]
   ...: )
   ...: 
   ...: df[["col3", "col4", "col5", "col6"]] = 
   ...:     df[["col3", "col4", "col5", "col6"]].astype(float)
   ...: 


Disclaimer:

If some of the columns that you are aggregating have null values, then you really want to be looking at the group row counts as an independent aggregation for each column. Otherwise you may be misled as to how many records are actually being used to calculate things like the mean because pandas will drop NaN entries in the mean calculation without telling you about it.

Get Solution for free from DataCamp guru