Math Javascript

| | | | | | | | | |

👻 Check our latest review to choose the best laptop for Machine Learning engineers and Deep learning tasks!

Computers are really good at math. It’s in their metaphorical blood, given that computers are powered by the 1’s and 0’s that we call binary. When you are programming, there will probably be a point where you want to do some math.

In JavaScript, math always comes out. You can use math to calculate the size of a window. You can use it to calculate if a user is old enough to use your site. You can use math to add two user-supplied numbers.

In this guide, we will explain how to perform mathematical operations in JavaScript using the five main mathematical operators.

Math operators: an update

JavaScript is made up of a number of operators. Some operators allow you to work with strings, while others help you perform JS math functions. In this guide, we are going to focus on a special type of operator called an arithmetic operator.

Arithmetic operators are symbols used to perform mathematical operations. These JS operators are somewhat similar to the ones you learned in school. For this article, we’ll focus on six operators:

  • Addition (+)
  • Subtraction (-)
  • Division (/ )
  • Multiplication (*)
  • Modulus (%)
  • Power (**)

Beginning of face and learn more about each of them.

Before you begin, it should be noted that all JavaScript numbers are stored as numbers. There is no separate data type for floating point (decimal) numbers or integers. We just call them all "numbers".

Add and Subtract

The JavaScript symbols for adding and subtracting JS numbers are the same ones we use in our everyday math life. How convenient! We can add the numbers indicating the numbers we want to add, separated by a plus sign:

Our code returns: 14. We could do a subtraction by substituting our advantage for a minus:

Our code returns: -4.

JavaScript math can work with both positive and negative numbers.

When working with a mathematical sum, it is probably not enough to print it to the console. variables come into play. You can assign numbers in your math problems to store all the numbers you’re working with:

Our code returns: 30. We assigned the value 10 to a and the value 20 to b Then we used the variable c to add these two numbers. It’s super easy!

Multiply and divide

Let’s go up one level and talk about multiplication and division . Unlike the previous examples, we will have to learn two new operators:

Let’s say we own a cookie factory and we want to figure out how many kilograms of flour we need. Each batch of cookies requires 2 kg of flour and we want to bake five batches. We could calculate how many kilograms of flour we need using this code:

Our code returns: You need 10kg of flour.

You can use the slash to perform split operations.

Let’s say each batch contains 40 cookies and you want to split them into packets. Each pack contains 5 cookies. Now you want to know how many packs you could make. This can be done using the following code:

Our code returns: You can create 8 cookie packages.

Module

The module operator may not be used as widely as the others, but it is still an important part of JavaScript. The modulo operator calculates the remainder of a number after it has been divided.

In JavaScript, the modulo operation is represented using a percent sign. Our last example showed us dividing numbers that can be divided equally. As you know, not all math problems are not run that way ; some return the leftovers.

Going back to our cookie example earlier. Suppose we overestimated the number of cookies we can make in each batch. turns out that each batch will only produce 37 cookies To find out how many packs we can make from our batch we could use this code:

The problem is that we have a deci wrong number ! This is where the module comes in. We could update our t code or calculate the rest of the available cookies:

Our code returns:

We have made some changes to our code. First, we’ve rounded the packsMade value to the nearest whole number. We have used Math.floor () for this purpose. This allows us to see that we can create 7 complete cookie packages.

We therefore used the modulo operator to calculate the remaining cookies that would be left. This tells us that after splitting our packets, there will be two cookies left.

Power

Increase x to the power y. It sounds pretty complicated, especially when you start to use words like exponential. But it doesn’t have to be difficult.

In JavaScript, two asterisks (**) represent the elevation of a number to a power:

This code returns: 343.

This is another way of writing 7 * 7 * 7, but it’s shorter and easier to read.

Order of operations

Mathematics has a specific order of operations. This describes the operations you must perform in which order when faced with a math problem.

One of the most common ways to remember this order is BODMAS:

This tells us that we need to do everything in parentheses first, then all the power calculations, then the division and so on. Consider the following problem:

The answer to this problem is: 17. JavaScript first calculates 5 * 3 because it is in parentheses. It then adds two to the result of this calculation.

Conclusion

JavaScript provides a range of arithmetic operators that you can use to perform mathematical operations. Some of these operators, such as addition, are the same ones we would use to evaluate a math problem; others have their own symbols.

Remember that when evaluating a math problem, you need to consider BODMAS, the order of operations in which the problem will be read.

You are now ready to start doing JavaScript math like a pro!

👻 Read also: what is the best laptop for engineering students?

Math Javascript __del__: Questions

__del__

How can I make a time delay in Python?

5 answers

I would like to know how to put a time delay in a Python script.

2973

Answer #1

import time
time.sleep(5)   # Delays for 5 seconds. You can also use a float value.

Here is another example where something is run approximately once a minute:

import time
while True:
    print("This prints once a minute.")
    time.sleep(60) # Delay for 1 minute (60 seconds).

2973

Answer #2

You can use the sleep() function in the time module. It can take a float argument for sub-second resolution.

from time import sleep
sleep(0.1) # Time in seconds

Math Javascript __del__: Questions

__del__

How to delete a file or folder in Python?

5 answers

How do I delete a file or folder in Python?

2639

Answer #1


Path objects from the Python 3.4+ pathlib module also expose these instance methods:

exp

How do I merge two dictionaries in a single expression (taking union of dictionaries)?

5 answers

Carl Meyer By Carl Meyer

I have two Python dictionaries, and I want to write a single expression that returns these two dictionaries, merged (i.e. taking the union). The update() method would be what I need, if it returned its result instead of modifying a dictionary in-place.

>>> x = {"a": 1, "b": 2}
>>> y = {"b": 10, "c": 11}
>>> z = x.update(y)
>>> print(z)
None
>>> x
{"a": 1, "b": 10, "c": 11}

How can I get that final merged dictionary in z, not x?

(To be extra-clear, the last-one-wins conflict-handling of dict.update() is what I"m looking for as well.)

5839

Answer #1

How can I merge two Python dictionaries in a single expression?

For dictionaries x and y, z becomes a shallowly-merged dictionary with values from y replacing those from x.

  • In Python 3.9.0 or greater (released 17 October 2020): PEP-584, discussed here, was implemented and provides the simplest method:

    z = x | y          # NOTE: 3.9+ ONLY
    
  • In Python 3.5 or greater:

    z = {**x, **y}
    
  • In Python 2, (or 3.4 or lower) write a function:

    def merge_two_dicts(x, y):
        z = x.copy()   # start with keys and values of x
        z.update(y)    # modifies z with keys and values of y
        return z
    

    and now:

    z = merge_two_dicts(x, y)
    

Explanation

Say you have two dictionaries and you want to merge them into a new dictionary without altering the original dictionaries:

x = {"a": 1, "b": 2}
y = {"b": 3, "c": 4}

The desired result is to get a new dictionary (z) with the values merged, and the second dictionary"s values overwriting those from the first.

>>> z
{"a": 1, "b": 3, "c": 4}

A new syntax for this, proposed in PEP 448 and available as of Python 3.5, is

z = {**x, **y}

And it is indeed a single expression.

Note that we can merge in with literal notation as well:

z = {**x, "foo": 1, "bar": 2, **y}

and now:

>>> z
{"a": 1, "b": 3, "foo": 1, "bar": 2, "c": 4}

It is now showing as implemented in the release schedule for 3.5, PEP 478, and it has now made its way into the What"s New in Python 3.5 document.

However, since many organizations are still on Python 2, you may wish to do this in a backward-compatible way. The classically Pythonic way, available in Python 2 and Python 3.0-3.4, is to do this as a two-step process:

z = x.copy()
z.update(y) # which returns None since it mutates z

In both approaches, y will come second and its values will replace x"s values, thus b will point to 3 in our final result.

Not yet on Python 3.5, but want a single expression

If you are not yet on Python 3.5 or need to write backward-compatible code, and you want this in a single expression, the most performant while the correct approach is to put it in a function:

def merge_two_dicts(x, y):
    """Given two dictionaries, merge them into a new dict as a shallow copy."""
    z = x.copy()
    z.update(y)
    return z

and then you have a single expression:

z = merge_two_dicts(x, y)

You can also make a function to merge an arbitrary number of dictionaries, from zero to a very large number:

def merge_dicts(*dict_args):
    """
    Given any number of dictionaries, shallow copy and merge into a new dict,
    precedence goes to key-value pairs in latter dictionaries.
    """
    result = {}
    for dictionary in dict_args:
        result.update(dictionary)
    return result

This function will work in Python 2 and 3 for all dictionaries. e.g. given dictionaries a to g:

z = merge_dicts(a, b, c, d, e, f, g) 

and key-value pairs in g will take precedence over dictionaries a to f, and so on.

Critiques of Other Answers

Don"t use what you see in the formerly accepted answer:

z = dict(x.items() + y.items())

In Python 2, you create two lists in memory for each dict, create a third list in memory with length equal to the length of the first two put together, and then discard all three lists to create the dict. In Python 3, this will fail because you"re adding two dict_items objects together, not two lists -

>>> c = dict(a.items() + b.items())
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: "dict_items" and "dict_items"

and you would have to explicitly create them as lists, e.g. z = dict(list(x.items()) + list(y.items())). This is a waste of resources and computation power.

Similarly, taking the union of items() in Python 3 (viewitems() in Python 2.7) will also fail when values are unhashable objects (like lists, for example). Even if your values are hashable, since sets are semantically unordered, the behavior is undefined in regards to precedence. So don"t do this:

>>> c = dict(a.items() | b.items())

This example demonstrates what happens when values are unhashable:

>>> x = {"a": []}
>>> y = {"b": []}
>>> dict(x.items() | y.items())
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unhashable type: "list"

Here"s an example where y should have precedence, but instead the value from x is retained due to the arbitrary order of sets:

>>> x = {"a": 2}
>>> y = {"a": 1}
>>> dict(x.items() | y.items())
{"a": 2}

Another hack you should not use:

z = dict(x, **y)

This uses the dict constructor and is very fast and memory-efficient (even slightly more so than our two-step process) but unless you know precisely what is happening here (that is, the second dict is being passed as keyword arguments to the dict constructor), it"s difficult to read, it"s not the intended usage, and so it is not Pythonic.

Here"s an example of the usage being remediated in django.

Dictionaries are intended to take hashable keys (e.g. frozensets or tuples), but this method fails in Python 3 when keys are not strings.

>>> c = dict(a, **b)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: keyword arguments must be strings

From the mailing list, Guido van Rossum, the creator of the language, wrote:

I am fine with declaring dict({}, **{1:3}) illegal, since after all it is abuse of the ** mechanism.

and

Apparently dict(x, **y) is going around as "cool hack" for "call x.update(y) and return x". Personally, I find it more despicable than cool.

It is my understanding (as well as the understanding of the creator of the language) that the intended usage for dict(**y) is for creating dictionaries for readability purposes, e.g.:

dict(a=1, b=10, c=11)

instead of

{"a": 1, "b": 10, "c": 11}

Response to comments

Despite what Guido says, dict(x, **y) is in line with the dict specification, which btw. works for both Python 2 and 3. The fact that this only works for string keys is a direct consequence of how keyword parameters work and not a short-coming of dict. Nor is using the ** operator in this place an abuse of the mechanism, in fact, ** was designed precisely to pass dictionaries as keywords.

Again, it doesn"t work for 3 when keys are not strings. The implicit calling contract is that namespaces take ordinary dictionaries, while users must only pass keyword arguments that are strings. All other callables enforced it. dict broke this consistency in Python 2:

>>> foo(**{("a", "b"): None})
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: foo() keywords must be strings
>>> dict(**{("a", "b"): None})
{("a", "b"): None}

This inconsistency was bad given other implementations of Python (PyPy, Jython, IronPython). Thus it was fixed in Python 3, as this usage could be a breaking change.

I submit to you that it is malicious incompetence to intentionally write code that only works in one version of a language or that only works given certain arbitrary constraints.

More comments:

dict(x.items() + y.items()) is still the most readable solution for Python 2. Readability counts.

My response: merge_two_dicts(x, y) actually seems much clearer to me, if we"re actually concerned about readability. And it is not forward compatible, as Python 2 is increasingly deprecated.

{**x, **y} does not seem to handle nested dictionaries. the contents of nested keys are simply overwritten, not merged [...] I ended up being burnt by these answers that do not merge recursively and I was surprised no one mentioned it. In my interpretation of the word "merging" these answers describe "updating one dict with another", and not merging.

Yes. I must refer you back to the question, which is asking for a shallow merge of two dictionaries, with the first"s values being overwritten by the second"s - in a single expression.

Assuming two dictionaries of dictionaries, one might recursively merge them in a single function, but you should be careful not to modify the dictionaries from either source, and the surest way to avoid that is to make a copy when assigning values. As keys must be hashable and are usually therefore immutable, it is pointless to copy them:

from copy import deepcopy

def dict_of_dicts_merge(x, y):
    z = {}
    overlapping_keys = x.keys() & y.keys()
    for key in overlapping_keys:
        z[key] = dict_of_dicts_merge(x[key], y[key])
    for key in x.keys() - overlapping_keys:
        z[key] = deepcopy(x[key])
    for key in y.keys() - overlapping_keys:
        z[key] = deepcopy(y[key])
    return z

Usage:

>>> x = {"a":{1:{}}, "b": {2:{}}}
>>> y = {"b":{10:{}}, "c": {11:{}}}
>>> dict_of_dicts_merge(x, y)
{"b": {2: {}, 10: {}}, "a": {1: {}}, "c": {11: {}}}

Coming up with contingencies for other value types is far beyond the scope of this question, so I will point you at my answer to the canonical question on a "Dictionaries of dictionaries merge".

Less Performant But Correct Ad-hocs

These approaches are less performant, but they will provide correct behavior. They will be much less performant than copy and update or the new unpacking because they iterate through each key-value pair at a higher level of abstraction, but they do respect the order of precedence (latter dictionaries have precedence)

You can also chain the dictionaries manually inside a dict comprehension:

{k: v for d in dicts for k, v in d.items()} # iteritems in Python 2.7

or in Python 2.6 (and perhaps as early as 2.4 when generator expressions were introduced):

dict((k, v) for d in dicts for k, v in d.items()) # iteritems in Python 2

itertools.chain will chain the iterators over the key-value pairs in the correct order:

from itertools import chain
z = dict(chain(x.items(), y.items())) # iteritems in Python 2

Performance Analysis

I"m only going to do the performance analysis of the usages known to behave correctly. (Self-contained so you can copy and paste yourself.)

from timeit import repeat
from itertools import chain

x = dict.fromkeys("abcdefg")
y = dict.fromkeys("efghijk")

def merge_two_dicts(x, y):
    z = x.copy()
    z.update(y)
    return z

min(repeat(lambda: {**x, **y}))
min(repeat(lambda: merge_two_dicts(x, y)))
min(repeat(lambda: {k: v for d in (x, y) for k, v in d.items()}))
min(repeat(lambda: dict(chain(x.items(), y.items()))))
min(repeat(lambda: dict(item for d in (x, y) for item in d.items())))

In Python 3.8.1, NixOS:

>>> min(repeat(lambda: {**x, **y}))
1.0804965235292912
>>> min(repeat(lambda: merge_two_dicts(x, y)))
1.636518670246005
>>> min(repeat(lambda: {k: v for d in (x, y) for k, v in d.items()}))
3.1779992282390594
>>> min(repeat(lambda: dict(chain(x.items(), y.items()))))
2.740647904574871
>>> min(repeat(lambda: dict(item for d in (x, y) for item in d.items())))
4.266070580109954
$ uname -a
Linux nixos 4.19.113 #1-NixOS SMP Wed Mar 25 07:06:15 UTC 2020 x86_64 GNU/Linux

Resources on Dictionaries

5839

Answer #2

In your case, what you can do is:

z = dict(list(x.items()) + list(y.items()))

This will, as you want it, put the final dict in z, and make the value for key b be properly overridden by the second (y) dict"s value:

>>> x = {"a":1, "b": 2}
>>> y = {"b":10, "c": 11}
>>> z = dict(list(x.items()) + list(y.items()))
>>> z
{"a": 1, "c": 11, "b": 10}

If you use Python 2, you can even remove the list() calls. To create z:

>>> z = dict(x.items() + y.items())
>>> z
{"a": 1, "c": 11, "b": 10}

If you use Python version 3.9.0a4 or greater, then you can directly use:

x = {"a":1, "b": 2}
y = {"b":10, "c": 11}
z = x | y
print(z)
{"a": 1, "c": 11, "b": 10}

5839

Answer #3

An alternative:

z = x.copy()
z.update(y)

Shop

Learn programming in R: courses

$

Best Python online courses for 2022

$

Best laptop for Fortnite

$

Best laptop for Excel

$

Best laptop for Solidworks

$

Best laptop for Roblox

$

Best computer for crypto mining

$

Best laptop for Sims 4

$

Latest questions

NUMPYNUMPY

psycopg2: insert multiple rows with one query

12 answers

NUMPYNUMPY

How to convert Nonetype to int or string?

12 answers

NUMPYNUMPY

How to specify multiple return types using type-hints

12 answers

NUMPYNUMPY

Javascript Error: IPython is not defined in JupyterLab

12 answers

News


Wiki

Python OpenCV | cv2.putText () method

numpy.arctan2 () in Python

Python | os.path.realpath () method

Python OpenCV | cv2.circle () method

Python OpenCV cv2.cvtColor () method

Python - Move item to the end of the list

time.perf_counter () function in Python

Check if one list is a subset of another in Python

Python os.path.join () method