Javascript Per Cycle

| | | | |

👻 Check our latest review to choose the best laptop for Machine Learning engineers and Deep learning tasks!

A JavaScript for loop executes a block of code as long as the specified condition is true. For JavaScript loops take three arguments: initialization, state and increment. The condition expression is evaluated on each loop. A loop continues to execute if the expression evaluates to true.

Loops repeat the same block of code until a certain condition is met. They are useful for many repetitive programming tasks.

For example, you can have two lists of first names, middle names, and last names , which you want to merge into one full name list. You can write one line of code for each name, but it could take hundreds of lines of code if the list is long. Also, if you are not sure how long the list will be? Here you can use a loop that repeats a block of similar code by joining each item in the list.

There are two main types of loops used in JavaScript:. while and for loops. While loops are condition-based and run as long as that condition equals true. For loops are executed a set of conditions given are true. They can count the number of iterations performed by the loop.

In this guide, we’ll explore the basics of JavaScript for loops. We’ll also discuss the for ... in and for ... JavaScript loops and use a few examples to illustrate how these loops work in JavaScript.

JavaScript for Loops

A for loop repeatedly executes the same code until a condition is met. Each iteration of a loop executes the same code with a different value. The syntax for an for loop is as follows:

This syntax is quite complex, so we’re going to break it down and define each term we used

Initialization <. / strong> allows you to declare a counter variable. This variable keeps track of how many times our loop has been executed

Condition is the condition that is evaluated before the start of each loop . If the state equals true, the code in the loop will be executed. If the condition becomes false, the loop will stop working

Increment Updates day of the counter loop each time the loop is executed.

Either using a basic example to show how for JavaScript works is a loop here that the number prints between 0 and 5:.

Our code returns the following:

You can see that our code has been running repeatedly until our loop condition is When the number 4 is printed on the, our loop stops. JavaScript console This is because we have asked our loop to print the digits in the range 0 and 5.

Components of a For loop in JavaScript

Let & rsquo ; s break down our example regarding the components of a for loop:

initialization

initialization of our loop declares a variable that keeps track of how many times our loop has been completed. In the example above, we used let i = 0 ;. This tells our program to start a counter called i which has the initial value 0.

initialization variables are usually named i., but you can use any variable name you want.

Condition

Our loop uses i < 5 condition. This tells our program that our loop should only work when the i variable is less than 5. If

i is equal to or greater than 5, our loop will stop.

Increment

At the end of our loop, our code uses i ++ as an increment. This function tells our program to add 1 i variables every time the loop is executed

For JavaScript Loop:. How

Now that we have broken our cycle, we can discuss how the cycle works as a whole. Here is the code for the loop we used above:

To begin with, we’ll declare an loop. This loop has an initialization variable set of 0. So our counter starts at 0.

So we say our loop should work when i is less than 5.

Our code i increments instead one each time our loop is executed. If our condition is met, the code in our loop is executed, which gives us the result we saw above. So our code iterates a block of code until i is five or greater, then our code breaks.

If we created a situation where our condition always returns true, the loop would become infinite. the infinite loops indefinitely continue unless the breakage statement added.

our code then prints i when the for statement is executed.

Note that each argument in a loop is optional. for example, if we have already declared an initialization variable, it is necessary to declare a new one. our loop Below is an example of a loop used with two arguments:. a condition and an increment

Our code returns:

We need to include the semicolon, even though we don’t have a specific ified initialization variable for our loop. This is because the semicolon is used to tell the program where the initialization, condition, and increment are displayed. Without a semicolon, JavaScript cannot interpret our loop.

JavaScript for ... In loops

... in loops can be used to Iterate elements in an iterable object. Here is the syntax for ... in loop in JavaScript:

... in loops are useful if one wants to execute a certain block of code depending on the number of attributes an object. For example, we could have a student object whose properties we want to print to the console.

Here is an example of a for… in loop that will cycle through each element in a student object. and print each attribute:

Our program returns the following:

As you can see, our program repeated each element in the student object and printed its property name. If we wanted to print the value of each item, we could use this code:

Our code returns the following:

We used the code from student [item] to get the value of each item in our iterable object. Next, we printed the item to the console using console.log ().

JavaScript For… Of Loops

For… in are useful when you want to iterate through the properties of an object. You should use a for… of if loop But if you want to iterate elements in an object.

We scroll through a series of students and write their names on the console:

Our code returns the following:

As you can See it, our for… of loop repeated each element in the students array. Each element is printed to the console.

The for ... loops de are more concise than a normal for loop. This makes a for ... of loop easier to read. The general rule for programming is to use the right tools for the job. For ... of loops are more easy to understand if you want to browse a list. So, do you should use ld for ... loops whenever possible.

Similarly , we can use for ... of on a string to iterate by its component characters. Here’s an example of this in action:

The result of our code is:

Our program repeated each letter of the name variable, then printed them individually to the console.

This can be useful if you want to check if a character appears in a string, for example.


Conclusion

For loops are a useful function in JavaScript that allows you to execute a block of code when a certain condition returns true.

In this article, we have seen how for loops work and how to use them in JavaScript. We also discussed the use of for… loops in and for… in in JavaScript. You are now ready to start automating repetitive tasks using for loops as JavaScript master !

👻 Read also: what is the best laptop for engineering students?

Javascript Per Cycle exp: Questions

exp

How do I merge two dictionaries in a single expression (taking union of dictionaries)?

5 answers

Carl Meyer By Carl Meyer

I have two Python dictionaries, and I want to write a single expression that returns these two dictionaries, merged (i.e. taking the union). The update() method would be what I need, if it returned its result instead of modifying a dictionary in-place.

>>> x = {"a": 1, "b": 2}
>>> y = {"b": 10, "c": 11}
>>> z = x.update(y)
>>> print(z)
None
>>> x
{"a": 1, "b": 10, "c": 11}

How can I get that final merged dictionary in z, not x?

(To be extra-clear, the last-one-wins conflict-handling of dict.update() is what I"m looking for as well.)

5839

Answer #1

How can I merge two Python dictionaries in a single expression?

For dictionaries x and y, z becomes a shallowly-merged dictionary with values from y replacing those from x.

  • In Python 3.9.0 or greater (released 17 October 2020): PEP-584, discussed here, was implemented and provides the simplest method:

    z = x | y          # NOTE: 3.9+ ONLY
    
  • In Python 3.5 or greater:

    z = {**x, **y}
    
  • In Python 2, (or 3.4 or lower) write a function:

    def merge_two_dicts(x, y):
        z = x.copy()   # start with keys and values of x
        z.update(y)    # modifies z with keys and values of y
        return z
    

    and now:

    z = merge_two_dicts(x, y)
    

Explanation

Say you have two dictionaries and you want to merge them into a new dictionary without altering the original dictionaries:

x = {"a": 1, "b": 2}
y = {"b": 3, "c": 4}

The desired result is to get a new dictionary (z) with the values merged, and the second dictionary"s values overwriting those from the first.

>>> z
{"a": 1, "b": 3, "c": 4}

A new syntax for this, proposed in PEP 448 and available as of Python 3.5, is

z = {**x, **y}

And it is indeed a single expression.

Note that we can merge in with literal notation as well:

z = {**x, "foo": 1, "bar": 2, **y}

and now:

>>> z
{"a": 1, "b": 3, "foo": 1, "bar": 2, "c": 4}

It is now showing as implemented in the release schedule for 3.5, PEP 478, and it has now made its way into the What"s New in Python 3.5 document.

However, since many organizations are still on Python 2, you may wish to do this in a backward-compatible way. The classically Pythonic way, available in Python 2 and Python 3.0-3.4, is to do this as a two-step process:

z = x.copy()
z.update(y) # which returns None since it mutates z

In both approaches, y will come second and its values will replace x"s values, thus b will point to 3 in our final result.

Not yet on Python 3.5, but want a single expression

If you are not yet on Python 3.5 or need to write backward-compatible code, and you want this in a single expression, the most performant while the correct approach is to put it in a function:

def merge_two_dicts(x, y):
    """Given two dictionaries, merge them into a new dict as a shallow copy."""
    z = x.copy()
    z.update(y)
    return z

and then you have a single expression:

z = merge_two_dicts(x, y)

You can also make a function to merge an arbitrary number of dictionaries, from zero to a very large number:

def merge_dicts(*dict_args):
    """
    Given any number of dictionaries, shallow copy and merge into a new dict,
    precedence goes to key-value pairs in latter dictionaries.
    """
    result = {}
    for dictionary in dict_args:
        result.update(dictionary)
    return result

This function will work in Python 2 and 3 for all dictionaries. e.g. given dictionaries a to g:

z = merge_dicts(a, b, c, d, e, f, g) 

and key-value pairs in g will take precedence over dictionaries a to f, and so on.

Critiques of Other Answers

Don"t use what you see in the formerly accepted answer:

z = dict(x.items() + y.items())

In Python 2, you create two lists in memory for each dict, create a third list in memory with length equal to the length of the first two put together, and then discard all three lists to create the dict. In Python 3, this will fail because you"re adding two dict_items objects together, not two lists -

>>> c = dict(a.items() + b.items())
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: "dict_items" and "dict_items"

and you would have to explicitly create them as lists, e.g. z = dict(list(x.items()) + list(y.items())). This is a waste of resources and computation power.

Similarly, taking the union of items() in Python 3 (viewitems() in Python 2.7) will also fail when values are unhashable objects (like lists, for example). Even if your values are hashable, since sets are semantically unordered, the behavior is undefined in regards to precedence. So don"t do this:

>>> c = dict(a.items() | b.items())

This example demonstrates what happens when values are unhashable:

>>> x = {"a": []}
>>> y = {"b": []}
>>> dict(x.items() | y.items())
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unhashable type: "list"

Here"s an example where y should have precedence, but instead the value from x is retained due to the arbitrary order of sets:

>>> x = {"a": 2}
>>> y = {"a": 1}
>>> dict(x.items() | y.items())
{"a": 2}

Another hack you should not use:

z = dict(x, **y)

This uses the dict constructor and is very fast and memory-efficient (even slightly more so than our two-step process) but unless you know precisely what is happening here (that is, the second dict is being passed as keyword arguments to the dict constructor), it"s difficult to read, it"s not the intended usage, and so it is not Pythonic.

Here"s an example of the usage being remediated in django.

Dictionaries are intended to take hashable keys (e.g. frozensets or tuples), but this method fails in Python 3 when keys are not strings.

>>> c = dict(a, **b)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: keyword arguments must be strings

From the mailing list, Guido van Rossum, the creator of the language, wrote:

I am fine with declaring dict({}, **{1:3}) illegal, since after all it is abuse of the ** mechanism.

and

Apparently dict(x, **y) is going around as "cool hack" for "call x.update(y) and return x". Personally, I find it more despicable than cool.

It is my understanding (as well as the understanding of the creator of the language) that the intended usage for dict(**y) is for creating dictionaries for readability purposes, e.g.:

dict(a=1, b=10, c=11)

instead of

{"a": 1, "b": 10, "c": 11}

Response to comments

Despite what Guido says, dict(x, **y) is in line with the dict specification, which btw. works for both Python 2 and 3. The fact that this only works for string keys is a direct consequence of how keyword parameters work and not a short-coming of dict. Nor is using the ** operator in this place an abuse of the mechanism, in fact, ** was designed precisely to pass dictionaries as keywords.

Again, it doesn"t work for 3 when keys are not strings. The implicit calling contract is that namespaces take ordinary dictionaries, while users must only pass keyword arguments that are strings. All other callables enforced it. dict broke this consistency in Python 2:

>>> foo(**{("a", "b"): None})
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: foo() keywords must be strings
>>> dict(**{("a", "b"): None})
{("a", "b"): None}

This inconsistency was bad given other implementations of Python (PyPy, Jython, IronPython). Thus it was fixed in Python 3, as this usage could be a breaking change.

I submit to you that it is malicious incompetence to intentionally write code that only works in one version of a language or that only works given certain arbitrary constraints.

More comments:

dict(x.items() + y.items()) is still the most readable solution for Python 2. Readability counts.

My response: merge_two_dicts(x, y) actually seems much clearer to me, if we"re actually concerned about readability. And it is not forward compatible, as Python 2 is increasingly deprecated.

{**x, **y} does not seem to handle nested dictionaries. the contents of nested keys are simply overwritten, not merged [...] I ended up being burnt by these answers that do not merge recursively and I was surprised no one mentioned it. In my interpretation of the word "merging" these answers describe "updating one dict with another", and not merging.

Yes. I must refer you back to the question, which is asking for a shallow merge of two dictionaries, with the first"s values being overwritten by the second"s - in a single expression.

Assuming two dictionaries of dictionaries, one might recursively merge them in a single function, but you should be careful not to modify the dictionaries from either source, and the surest way to avoid that is to make a copy when assigning values. As keys must be hashable and are usually therefore immutable, it is pointless to copy them:

from copy import deepcopy

def dict_of_dicts_merge(x, y):
    z = {}
    overlapping_keys = x.keys() & y.keys()
    for key in overlapping_keys:
        z[key] = dict_of_dicts_merge(x[key], y[key])
    for key in x.keys() - overlapping_keys:
        z[key] = deepcopy(x[key])
    for key in y.keys() - overlapping_keys:
        z[key] = deepcopy(y[key])
    return z

Usage:

>>> x = {"a":{1:{}}, "b": {2:{}}}
>>> y = {"b":{10:{}}, "c": {11:{}}}
>>> dict_of_dicts_merge(x, y)
{"b": {2: {}, 10: {}}, "a": {1: {}}, "c": {11: {}}}

Coming up with contingencies for other value types is far beyond the scope of this question, so I will point you at my answer to the canonical question on a "Dictionaries of dictionaries merge".

Less Performant But Correct Ad-hocs

These approaches are less performant, but they will provide correct behavior. They will be much less performant than copy and update or the new unpacking because they iterate through each key-value pair at a higher level of abstraction, but they do respect the order of precedence (latter dictionaries have precedence)

You can also chain the dictionaries manually inside a dict comprehension:

{k: v for d in dicts for k, v in d.items()} # iteritems in Python 2.7

or in Python 2.6 (and perhaps as early as 2.4 when generator expressions were introduced):

dict((k, v) for d in dicts for k, v in d.items()) # iteritems in Python 2

itertools.chain will chain the iterators over the key-value pairs in the correct order:

from itertools import chain
z = dict(chain(x.items(), y.items())) # iteritems in Python 2

Performance Analysis

I"m only going to do the performance analysis of the usages known to behave correctly. (Self-contained so you can copy and paste yourself.)

from timeit import repeat
from itertools import chain

x = dict.fromkeys("abcdefg")
y = dict.fromkeys("efghijk")

def merge_two_dicts(x, y):
    z = x.copy()
    z.update(y)
    return z

min(repeat(lambda: {**x, **y}))
min(repeat(lambda: merge_two_dicts(x, y)))
min(repeat(lambda: {k: v for d in (x, y) for k, v in d.items()}))
min(repeat(lambda: dict(chain(x.items(), y.items()))))
min(repeat(lambda: dict(item for d in (x, y) for item in d.items())))

In Python 3.8.1, NixOS:

>>> min(repeat(lambda: {**x, **y}))
1.0804965235292912
>>> min(repeat(lambda: merge_two_dicts(x, y)))
1.636518670246005
>>> min(repeat(lambda: {k: v for d in (x, y) for k, v in d.items()}))
3.1779992282390594
>>> min(repeat(lambda: dict(chain(x.items(), y.items()))))
2.740647904574871
>>> min(repeat(lambda: dict(item for d in (x, y) for item in d.items())))
4.266070580109954
$ uname -a
Linux nixos 4.19.113 #1-NixOS SMP Wed Mar 25 07:06:15 UTC 2020 x86_64 GNU/Linux

Resources on Dictionaries

5839

Answer #2

In your case, what you can do is:

z = dict(list(x.items()) + list(y.items()))

This will, as you want it, put the final dict in z, and make the value for key b be properly overridden by the second (y) dict"s value:

>>> x = {"a":1, "b": 2}
>>> y = {"b":10, "c": 11}
>>> z = dict(list(x.items()) + list(y.items()))
>>> z
{"a": 1, "c": 11, "b": 10}

If you use Python 2, you can even remove the list() calls. To create z:

>>> z = dict(x.items() + y.items())
>>> z
{"a": 1, "c": 11, "b": 10}

If you use Python version 3.9.0a4 or greater, then you can directly use:

x = {"a":1, "b": 2}
y = {"b":10, "c": 11}
z = x | y
print(z)
{"a": 1, "c": 11, "b": 10}

5839

Answer #3

An alternative:

z = x.copy()
z.update(y)

JSON datetime between Python and JavaScript

4 answers

kevin By kevin

I want to send a datetime.datetime object in serialized form from Python using JSON and de-serialize in JavaScript using JSON. What is the best way to do this?

403

Answer #1

You can add the "default" parameter to json.dumps to handle this:

date_handler = lambda obj: (
    obj.isoformat()
    if isinstance(obj, (datetime.datetime, datetime.date))
    else None
)
json.dumps(datetime.datetime.now(), default=date_handler)
""2010-04-20T20:08:21.634121""

Which is ISO 8601 format.

A more comprehensive default handler function:

def handler(obj):
    if hasattr(obj, "isoformat"):
        return obj.isoformat()
    elif isinstance(obj, ...):
        return ...
    else:
        raise TypeError, "Object of type %s with value of %s is not JSON serializable" % (type(obj), repr(obj))

Update: Added output of type as well as value.
Update: Also handle date

What blocks Ruby, Python to get Javascript V8 speed?

4 answers

Are there any Ruby / Python features that are blocking implementation of optimizations (e.g. inline caching) V8 engine has?

Python is co-developed by Google guys so it shouldn"t be blocked by software patents.

Or this is rather matter of resources put into the V8 project by Google.

260

Answer #1

What blocks Ruby, Python to get Javascript V8 speed?

Nothing.

Well, okay: money. (And time, people, resources, but if you have money, you can buy those.)

V8 has a team of brilliant, highly-specialized, highly-experienced (and thus highly-paid) engineers working on it, that have decades of experience (I"m talking individually – collectively it"s more like centuries) in creating high-performance execution engines for dynamic OO languages. They are basically the same people who also created the Sun HotSpot JVM (among many others).

Lars Bak, the lead developer, has been literally working on VMs for 25 years (and all of those VMs have lead up to V8), which is basically his entire (professional) life. Some of the people writing Ruby VMs aren"t even 25 years old.

Are there any Ruby / Python features that are blocking implementation of optimizations (e.g. inline caching) V8 engine has?

Given that at least IronRuby, JRuby, MagLev, MacRuby and Rubinius have either monomorphic (IronRuby) or polymorphic inline caching, the answer is obviously no.

Modern Ruby implementations already do a great deal of optimizations. For example, for certain operations, Rubinius"s Hash class is faster than YARV"s. Now, this doesn"t sound terribly exciting until you realize that Rubinius"s Hash class is implemented in 100% pure Ruby, while YARV"s is implemented in 100% hand-optimized C.

So, at least in some cases, Rubinius can generate better code than GCC!

Or this is rather matter of resources put into the V8 project by Google.

Yes. Not just Google. The lineage of V8"s source code is 25 years old now. The people who are working on V8 also created the Self VM (to this day one of the fastest dynamic OO language execution engines ever created), the Animorphic Smalltalk VM (to this day one of the fastest Smalltalk execution engines ever created), the HotSpot JVM (the fastest JVM ever created, probably the fastest VM period) and OOVM (one of the most efficient Smalltalk VMs ever created).

In fact, Lars Bak, the lead developer of V8, worked on every single one of those, plus a few others.

Django Template Variables and Javascript

4 answers

When I render a page using the Django template renderer, I can pass in a dictionary variable containing various values to manipulate them in the page using {{ myVar }}.

Is there a way to access the same variable in Javascript (perhaps using the DOM, I don"t know how Django makes the variables accessible)? I want to be able to lookup details using an AJAX lookup based on the values contained in the variables passed in.

256

Answer #1

The {{variable}} is substituted directly into the HTML. Do a view source; it isn"t a "variable" or anything like it. It"s just rendered text.

Having said that, you can put this kind of substitution into your JavaScript.

<script type="text/javascript"> 
   var a = "{{someDjangoVariable}}";
</script>

This gives you "dynamic" javascript.

Shop

Learn programming in R: courses

$

Best Python online courses for 2022

$

Best laptop for Fortnite

$

Best laptop for Excel

$

Best laptop for Solidworks

$

Best laptop for Roblox

$

Best computer for crypto mining

$

Best laptop for Sims 4

$

Latest questions

NUMPYNUMPY

psycopg2: insert multiple rows with one query

12 answers

NUMPYNUMPY

How to convert Nonetype to int or string?

12 answers

NUMPYNUMPY

How to specify multiple return types using type-hints

12 answers

NUMPYNUMPY

Javascript Error: IPython is not defined in JupyterLab

12 answers


Wiki

Python OpenCV | cv2.putText () method

numpy.arctan2 () in Python

Python | os.path.realpath () method

Python OpenCV | cv2.circle () method

Python OpenCV cv2.cvtColor () method

Python - Move item to the end of the list

time.perf_counter () function in Python

Check if one list is a subset of another in Python

Python os.path.join () method