Change language

Plotting in Python | Set 1

| | |

Install

The easiest way to install matplotlib — this is to use pip. Enter the following command in terminal:

 pip install matplotlib 

OR you can download it from here and install manually.

Getting started (laying the line)

# import the required module

import matplotlib.pyplot as plt

 
# x-axis values ​​

x = [ 1 , 2 , 3 ]

# corresponding Y-axis values ​​

y = [ 2 , 4 , 1 ]

 
# plotting dots
plt.plot (x, y)

 
# x-axis title

plt.xlabel ( ’x - axis’ )

# axis name Y

plt.ylabel ( ’y - axis’ )

  
# giving a title to my graphic

plt.title ( ’My first graph!’ )

 
# plot display function
plt.show ()

Output:

The code seems self-evident. The following steps were taken:

  • Define the X-axis and corresponding Y-axis values ​​as lists.
  • Place them on the canvas using the .plot () function .
  • Name the X and Y axes using the .xlabel () and .ylabel () functions.
  • Name your graphic, using the .title () function .
  • Finally, we use .show () function .

Draw two or more lines on the same site

import matplotlib.pyplot as plt

  
# line 1 point

x1 = [ 1 , 2 , 3 ]

y1 = [ 2 , 4 , 1 ]

# line drawing 1 point

plt.plot (x1, y1, label = "line 1" )

 
# line 2 points

x2 = [ 1 , 2 , 3 ]

y2 = [ 4 , 1 , 3 ]

# line 2 points

plt.plot (x2, y2, label = "line 2" )

 
# x-axis title

plt.xlabel ( ’x - axis’ )

# Y axis name

plt.ylabel ( ’y - axis’ )

# giving a title to my graphic

plt.title ( ’ Two lines on same graph! ’ )

 
# show story legend
plt.legend ()

 
# plot display function
plt.show ()

Output:

  • Here we are plotting two lines on one graph. We distinguish them by giving them a name ( label ), which is passed as an argument to the .plot () function.
  • The small rectangle-method/">rectangle with information about the line type and its color is called a legend. We can add a legend to our graphics using the .legend () function .

C ustomization from parcels

Here we discuss some basic settings that apply to almost any plot.

import matplotlib.pyplot as plt

 
# x-axis values ​​

x = [ 1 , 2 , 3 , 4 , 5 , 6 ]

# corresponding Y-axis values ​​

y = [ 2 , 4 , 1 , 5 , 2 , 6 ]

 
# dots

plt.plot (x, y, color = ’green’ , linestyle = ’ dashed’ , linewidth = 3 ,

marker = ’o’ , markerfacecolor = ’ blue ’ , markersize = 12 )

  
# set the x and y axis range

plt.ylim ( 1 , 8 )

plt.xlim ( 1 , 8 )

 
# x-axis title

plt.xlabel ( ’x - axis’ )

# Y-axis name

plt .ylabel ( ’y - axis’ )

  
# giving a title to my graphic

plt.title ( ’Some cool customizations!’ )

 
# plot show function
plt.show ()

Output:

As you can see, we have made several settings such as

  • setting line width, line style, line color.
  • mar setting ker, marker face color, marker size.
  • override the X and Y axis range. If not overridden, the pyplot module uses autoscale to set the range and scale of the axis.

Histogram

import matplotlib.pyplot as plt

 
# x-coordinates of the left side of the bars

left = [ 1 , 2 , 3 , 4 , 5 ]

 
# bar heights

height = [ 10 , 24 , 36 , 40 , 5 ]

 
# bar labels

tick_label = [ ’one’ , ’ two ’ , ’ three’ , ’four’ , ’ five’ ]

 
# building a histogram

plt.bar (left, height, tick_label = tick_label,

  width = 0.8 , color = [ ’ red’ , ’green’ ])

 
# axis name X

plt.xlabel ( ’x - axis’ )

# Y-axis name

plt.ylabel ( ’y - axis’ )

# story title

plt.title ( ’My bar chart!’ )

 
# plot show function
plt.show ()

Output:

  • Here we use the plt.bar () function to plot the bar graph.
  • The X-coordinates of the left side of the bars are passed along with the height of the bars.
  • You can also name the X-axis coordinates by defining tick_labels

Histogram

import matplotlib.pyplot as plt

 
# frequencies

ages = [ 2 , 5 , 70 , 40 , 30 , 45 , 50 , 45 , 43 , 40 , 44 ,

60 , 7 , 13 , 57 , 18 , 90 , 77 , 32 , 21 , 20 , 40 ]

 
# setting ranges and no. ranges

range = ( 0 , 100 )

bins = 10  

 
# building a histogram

plt.hist (ages, bins, range , color = ’green’ ,

  histtype = ’bar’ , rwidth = 0.8 )

 
X-axis label

plt.xlabel ( ’age’ )

# frequency tag

plt.ylabel ( ’No. of people’ )

# story name

plt.title ( ’My histogram’ )

 
# plot show function
plt.show ( )

Output:

  • Here we use the plt.hist () function to plot the histogram.
  • frequencies are transmitted as a list of ages .
  • The range can be set by specifying a tuple containing the minimum and maximum values.
  • The next step is “ selection "range of values, that is, section Dividing the entire range of values ​​into a number of bins, and then counting the number of values ​​that fall within each bin. Here we have defined bins = 10. So there are 100/10 = 10 bins.

Dot plot

Output:

  • Here we use the plt.scatter () function to plot the scatter plot.
  • Similar to the line, we also define the x and the corresponding y-axis values.
  • The marker argument is used to set the character to use as a marker. Its size can be determined using the s parameter.

Pie Chart

import matplotlib.pyplot as plt

 
# X-axis values

x = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ]

# Y-axis values ​​

y = [ 2 , 4 , 5 , 7 , 6 , 8 , 9 , 11 , 12 , 12 ]

 
# plotting points as a scatter plot

plt.scatter (x, y, label = " stars " , color = "green"

marker = "*" , s = 30 )

 
X-axis label

plt.xlabel ( ’x - axis’ )

# frequency tag

plt.ylabel ( ’ y - axis’ )

# plot title

plt.title ( ’My scatter plot!’ )

# shows the legend
plt.legend ()

 
# plot show function
plt.show ()

import matplotlib.pyplot as plt

  
#define tags

activities = [ ’ eat’ , ’sleep’ , ’ work’ , ’play’ ]

  
# the part covered by each label

slices = [ 3 , 7 , 8 , 6 ]

 
# color for each tag

colors = [ ’r’ , ’ y ’ , ’ g’ , ’b’ ]

  
# building a pie chart

plt.pie (slices, labels = activities, colors = colors, 

startangle = 90 , shadow = True , explode = ( 0 , 0 , 0.1 , 0 ),

radius = 1.2 , autopct = ’% 1.1f %%’ )

 
# sketching the legend
plt.legend ()

  
# show plot
plt.show ()

The output of the above program looks like this:

  • Here we are build a pie chart using the plt.pie () method .
  • First of all, we define labels using a list called actions .
  • Then a portion of each label can be defined using another list called slices .
  • The color for each label is defined with using a list called colors .
  • shadow = True will show the shadow by e each label on the pie chart.
  • startangle rotates the start of the pie chart the specified degrees counterclockwise from the x-axis.
  • explode is used to set the fraction of the radius with which we offset each wedge.
  • autopct is used to format the value of each label. Here we have set it to only show a percentage up to 1 decimal place.

Plot the curves of this equation

# import required modules

import matplotlib.pyplot as plt

import numpy as np

 
# setting x coordinates

x = np.arange ( 0 , 2 * (np.pi), 0.1 )

# setting the appropriate y - coordinates

y = np.sin (x)

 
# fill points
plt.plot (x, y)

                                                                                                                                                 
# plot show function
plt.show ()

The output of the above program looks like this:

Here we use NumPy, which is a generic package for handling arrays in Python.

  • To set the x-axis values, we we use the np.arange () method, in which the first two arguments are for a range, and the third is — for incremental increments. The result is a NumPy array.
  • To get the corresponding Y-axis values, we simply use the predefined np.sin () method on the numpy array.
  • Finally, we plot the points by passing the x and y arrays to the plt.plot () function .

So, in this part, we discussed the different types of plots that we can create in matplotlib. There are a few more plots that were not covered, but the most significant ones are discussed here —

  • Plotting in Python | Set 2
  • Shop

    Learn programming in R: courses

    $

    Best Python online courses for 2022

    $

    Best laptop for Fortnite

    $

    Best laptop for Excel

    $

    Best laptop for Solidworks

    $

    Best laptop for Roblox

    $

    Best computer for crypto mining

    $

    Best laptop for Sims 4

    $

    Latest questions

    NUMPYNUMPY

    Common xlabel/ylabel for matplotlib subplots

    12 answers

    NUMPYNUMPY

    How to specify multiple return types using type-hints

    12 answers

    NUMPYNUMPY

    Why do I get "Pickle - EOFError: Ran out of input" reading an empty file?

    12 answers

    NUMPYNUMPY

    Flake8: Ignore specific warning for entire file

    12 answers

    NUMPYNUMPY

    glob exclude pattern

    12 answers

    NUMPYNUMPY

    How to avoid HTTP error 429 (Too Many Requests) python

    12 answers

    NUMPYNUMPY

    Python CSV error: line contains NULL byte

    12 answers

    NUMPYNUMPY

    csv.Error: iterator should return strings, not bytes

    12 answers


Wiki

Python | How to copy data from one Excel sheet to another

Common xlabel/ylabel for matplotlib subplots

Check if one list is a subset of another in Python

sin

How to specify multiple return types using type-hints

exp

Printing words vertically in Python

exp

Python Extract words from a given string

Cyclic redundancy check in Python

Finding mean, median, mode in Python without libraries

cos

Python add suffix / add prefix to strings in a list

Why do I get "Pickle - EOFError: Ran out of input" reading an empty file?

Python - Move item to the end of the list

Python - Print list vertically