Change language

# Analyzing data with SciPy

The advantage of using the SciPy library in Python when building ML models is that it also makes a powerful programming language available for use in developing less complex programs and applications.

` `

` # import digital library import numpy as np A = np.array ([[ 1 , 2 , 3 ], [ 4 , 5 , 6 ], [ 7 , 8 , 8 ]]) `

` `

### Linear Algebra

1. Matrix determinant

` `

` # import linalg function from scipy from scipy import linalg   # Calculate matrix determinant linalg.det (A) `

` `

`  Output:  2.999999999999997 `
2. Computing the expanded LU decomposition of a matrix
LU decomposition — it is a method that reduces a matrix into its constituent parts, which helps in easier computation of complex matrix operations. Decomposition methods are also called matrix factorization methods, which are the backbone of linear algebra in computers, even for basic operations such as solving systems of linear equations, computing the inverse, and computing the determinant of a matrix.
The decomposition is:
A = PLU
where P — permutation matrix, L lower triangular with unit diagonal elements and U upper triangular.

 ` P, L, U ` ` = ` ` linalg.lu (A) ` ` print ` ` (P) ` ` print ` ` (L) ` ` print ` ` (U) ` ` # print LU decomposition ` ` print ` ` (np.dot (L, U)) `

`  Output:  array ([[0., 1., 0.], [0., 0., 1.], [1., 0., 0.]]) array ([[1., 0., 0.], [0.14285714, 1., 0.], [0.57142857, 0.5, 1. ]]) array ([[7., 8., 8.], [0., 0.85714286, 1.85714286], [0., 0., 0.5]]) array ([[7., 8., 8.] , [1., 2., 3 .], [4., 5., 6.]]) `
3. Eigenvalues ​​and eigenvectors of this matrix

 ` eigen_values, eigen_vectors ` ` = ` ` linalg.eig (A) ` ` print ` ` (eigen_values) ` ` print ` ` (eigen_vectors) `

`  Output :  array ([15.55528261 + 0.j, -1.41940876 + 0.j, -0.13587385 + 0.j]) array ([[- 0.24043423, -0.67468642, 0.51853459], [-0.54694322, -0.23391616, - 0.78895962], [-0.80190056, 0.70005819, 0.32964312]]) `
4. Solving systems of linear equations can also be done

` `

` v   = np.array ([[ 2 ], [ 3 ], [ 5 ]]) print (v) s = linalg.solve (A, v) print (s) `

`  Output:  array ([[2], [3], [5]]) array ([ [-2.33333333], [3.66666667], [-1. ]]) `

### Sparse Linear Algebra

SciPy has several routines for computing sparse and potentially very large matrices. The required tools are in the scipy.sparse submodule.
Let’s see how to build a large sparse matrix:

 ` # import the required modules ` ` from ` ` scipy ` ` import ` ` sparse ` ` # String-based sparse linked list matrix ` ` A ` ` = ` ` sparse.lil_matrix ((` ` 1000 ` `, ` ` 1000 ` `)) ` ` print ` ` (A) `   ` A [` ` 0 ` ` ,: ` ` 100 ` `] ` < code class = "keyword"> = ` np.random.rand (` ` 100 ` `) ` ` A [` ` 1 ` `, ` ` 100 ` `: ` ` 200 ` ` ] ` ` = ` ` A [` ` 0 ` ` ,: ` ` 100 ` `] ` ` A.setdiag (np.random.rand (` ` 1000 ` `)) ` ` print ` ` (A) `

`  Output:  "1000x1000 sparse matrix of type ’’ with 0 stored elements in LInked List format" "1000x1000 sparse matrix of type ’’ with 1199 stored elements in LInked List format" `
1. Linear algebra for sparse matrices

 ` from ` ` scipy .sparse ` ` import ` ` linalg `   ` # Convert this matrix to Compressed Sparse Row format. ` ` A.tocsr () `   ` A ` ` = ` ` A.tocsr () ` ` b ` ` = ` ` np.random.rand (` ` 1000 ` `) ` ` ans ` ` = ` ` linalg.spsolve (A, b) ` ` # will print an array of data x 1000 ` ` print ` ` (ans) `

`  Output:  array ([- 2.53380006e + 03, -1.25513773e + 03, 9.14885544e-01, 2.74521543e + 00, 5.99942835e-01, 4.57778093e-01, 1.87104209e-01, 2.15228367e + 00, 8.78588432e-01, 1.85105721e + 03, 1.00842538e + 00, 4.33970632e + 00, 5.26601699e + 00, 2.17572231e-01, 1.79869079e + 00, 3.83800946e-01, 2.57817130e-01, 5.18025462e-01, 1.68672669e + 00, 3.07971950e + 00, 6.20604437e-01, 1.41365890e-01, 3.18167429e-01, 2.06457302e-01, 8.94813817e-01, 5.06084834e + 00, 5.00913942e-01, 1.37391305e + 00, 2.32081425e + 00, 4.98093749e + 00, 1.75492222e + 00, 3.17278127e-01, 8.50013844e-01, 1.17524493e + 00, 1.70173722e + 00, .............)) `

### integration

When a function is very difficult to integrate analytically, you can simply find a solution using numerical integration methods. SciPy can do numeric integration as well. Scipi has integration methods in the scipy.integrate module.

1. Single Integrals
The Quad subroutine is an important feature from SciPy’s integration functions ... If the integration over the function f (x), where x ranges from a to b, then the integral looks like this.

Parameters quad — this is scipy.integrate.quad (f, a, b), where "f" — this is a function for integration. Whereas "a" and "b" are the lower and upper range of the limitation of x. Let’s look at an example of integrating in the range from 0 to 1 relative to dx
First we define the function f (x) = e ^ (- x ^ 2), this is done with a lambda expression, and then the quad subroutine is used.

 ` import ` ` scipy.integrate ` ` f ` ` = ` ` lambda ` ` x: np.exp (` ` - ` ` x ` ` * ` ` * ` ` 2 ` `) ` ` # print results ` ` i ` ` = ` ` scipy.integrate.quad (f, ` ` 0 ` `, ` ` 1 ` `) ` ` print ` ` (i) ` < / p>

` (0.7468241328124271, 8.291413475940725e-15) `

The quad function returns two values, where the first number is the integral value and the second — probable error in the value of the integral.

2. Double integrals
Function parameters dblquad : scipy.integrate.dblquad ( f, a, b, g, h) . Where "f" — this is the function to be integrated, "a" and "b" — the lower and upper ranges of the variable x, respectively, and "g" and "h" — functions that report the lower and upper limits. variable y.
As an example, let’s run the double integral x * y ^ 2 over the range 0 to 2 and y from 0 to 1.

We define functions f, g and h using lambda expressions. Note that even though g and h are constants, as they can in many cases, they must be defined as functions, as we did here for the lower limit.

 ` from ` ` scipy ` ` import ` ` integrate ` ` f ` ` = ` ` lambda ` ` y, x : x ` ` * ` ` y ` ` * ` ` * ` ` 2 ` ` i ` ` = ` ` integrate.dblquad (f, ` ` 0 ` `, ` ` 2 ` `, ` ` lambda ` ` x: 0 , lambda x : 1 ) `` # print results print (i) `

` Output: (0.6666666666666667, 7.401486830834377e-15) `

SciPy can do a lot do for example Fourier transforms, Bessel functions, etc.
You can refer to the documentation for more details!

## Shop

Learn programming in R: courses

\$FREE

Best Python online courses for 2022

\$FREE

Best laptop for Fortnite

\$399+

Best laptop for Excel

\$

Best laptop for Solidworks

\$399+

Best laptop for Roblox

\$399+

Best computer for crypto mining

\$499+

Best laptop for Sims 4

\$

Latest questions

PythonStackOverflow

Common xlabel/ylabel for matplotlib subplots

PythonStackOverflow

Check if one list is a subset of another in Python

PythonStackOverflow

How to specify multiple return types using type-hints

PythonStackOverflow

Printing words vertically in Python

PythonStackOverflow

Python Extract words from a given string

PythonStackOverflow

Why do I get "Pickle - EOFError: Ran out of input" reading an empty file?

PythonStackOverflow

Python os.path.join () method

PythonStackOverflow

Flake8: Ignore specific warning for entire file

## Wiki

Python | How to copy data from one Excel sheet to another

Common xlabel/ylabel for matplotlib subplots

Check if one list is a subset of another in Python

How to specify multiple return types using type-hints

Printing words vertically in Python

Python Extract words from a given string

Cyclic redundancy check in Python

Finding mean, median, mode in Python without libraries