Complex Numbers in Python | Set 2 (Essential Functions and Constants)

File handling | Python Methods and Functions

1. exp () : — This function returns the exponent of the complex number mentioned in its argument.

2. log (x, b) : — This function returns the logarithmic base b value of x , both mentioned in their arguments. If no base is specified, the natural logarithm of x is returned.

# Python code to demonstrate how it works
# exp (), log ()

 
# import & quot; cmath & quot ; for operations with complex numbers

import cmath

import math

 
# Initializing real numbers

x = 1.0

y = 1.0

  
# convert x and y to complex number

z = complex (x, y); 

 
# print complex number metric

print ( "The exponent of complex number is:" , end = "")

print (cmath.exp (z))

  
# printing the complex issue form journal

print ( "The log (base 10) of complex number is:" , end = " ")

print (cmath.log (z, 10 ))

Exit d:

 The exponent of complex number is: (1.4686939399158851 + 2.2873552871788423j) The log (base 10) of complex number is: (0.15051499783199057 + 0.3410940884604603j) 

3. log10 () : — This function returns a base 10 logs of a complex number.

4. sqrt () : — This calculates the square root of a complex number.

# Python code to demonstrate how it works
# log10 (), sqrt ()
# import & quot; cmath & quot; for operations with complex numbers

import cmath

import math

 
# Initializing real numbers

x = 1.0

y = 1.0

  
# convert x and y to complex number

z = complex (x, y); 

 
# printing log10 complex number

print ( "The log10 of complex number is:" , end = "")

print (cmath.log10 (z))

  
# printing the square root of the complex number

print ( " The square root of complex number is: " , end = "")

print ( cmath.sqrt (z))

Output:

 The log10 of complex number is: (0.15051499 783199057 + 0.3410940884604603j) The square root of complex number is: (1.09868411346781 + 0.45508986056222733j) 

5. isfinite () : — Returns true if the real and imaginary parts of the complex number are finite , otherwise it returns false.

6. isinf () : — returns true if the real or imaginary part of the complex number is infinite , otherwise returns false.

7. isnan () : — returns true if the real or imaginary part of the complex number is NaN , otherwise returns false.

# Python code to demonstrate how it works
# isnan (), isinf (), isfinite ()

  
# import & quot; cmath & quot; for operations with complex numbers

import cmath

import math

 
# Initializing real numbers

x = 1.0

y = 1.0

a = math. inf

b = math.nan

 
# convert x and y to complex number

z = complex (x, y); 

 
# convert x and a to a complex number

w = complex (x, a); 

 
# convert x and b to complex number

v = complex (x, b); 

 
# check if both numbers are finite

if cmath.isfinite (z):

print ( "Complex number is finite" )

else : print ( " Complex number is infinite "

 
# check if any number is infinite

if cmath.isinf (w):

print ( "Complex number is infinite" < code class = "plain">)

else : print ( " Complex number is finite "

 
# check if any number is infinite

if cmath.isnan (v):

  print ( "Complex number is NaN" )

else : print ( " Complex number is not NaN "

Output:

 Complex number is finite Complex number is infinite Complex numbe r is NaN 

Constants

The cmath module defines two constants “pi” that return a numeric value pi. The second —  "e", which returns the numeric value of the exponent.

# Python code to demonstrate how it works
# pi and e

 
# import & quot; cmath & quot; for operations with complex numbers

import cmath

import math

 
# printing pi value

print ( "The value of pi is:" , end = " ")

print (cmath.pi)

 
# print e value

print ( " The value of exponent is: " , end = "")

print (cmath.e)

Output:

 The value of pi is: 3.141592653589793 The value of exponent is: 2.718281828459045 

Manjit Singh . If you are as Python.Engineering and would like to contribute, you can also write an article using contribute.python.engineering or by posting an article contribute @ python.engineering. See my article appearing on the Python.Engineering homepage and help other geeks.

Please post comments if you find anything wrong or if you would like to share more information on the topic discussed above.





Tutorials