Blurring and expanding images on OpenCV in Python

blur | exp | open | Python Methods and Functions

In this task, we will see how Python can perform some morphological operations such as erosion and expansion using the OpenCV module. The OpenCV library is mainly for computer vision. It is open source. It was originally developed by Intel. It is free to use under the BSD open source license. 

To use the functionality of OpenCV, we need to download them with pip.



 sudo pip3 install opencv-python 



What is Erosion Image and how does it work?

In erosion, it blurs the boundaries of foreground objects. Used to remove small white noise from images. Erosion can also be used to separate two related images.


  • The core is formed from the image. The kernel is a matrix where the order is odd, like 3, 5, 7.
  • The pixel of the image is selected. This pixel will be selected as 1 only if all pixels under the kernel are 1. Otherwise it will be blurred.
  • This way, all pixels near the border will be discarded.
  • This way, the foreground object becomes thinner.
  • The kernel is formed from the image. The kernel is a matrix where the order is odd, like 3, 5, 7.
  • The pixel of the image is selected. This pixel will be selected as 1 only if all pixels under the kernel are 1. Otherwise it will be blurred.
  • The kernel is formed from an image. The kernel is a matrix where the order is odd, like 3, 5, 7.
  • The pixel of the image is selected. This pixel will be selected as 1 only if all pixels below the kernel are 1.
  • Increases the white area or the size of the foreground objects in the image.
  • This reduces the thickness of the foreground object. < / li>
 import cv2 import numpy as np input_image = cv2.imread ('TP_logo.jpg', cv2.IMREAD_COLOR) kernel = np. ones ((3,3), np.uint8) # set kernel as 3x3 matrix from numpy #Create erosion and dilation image from the original image erosion_image = cv2.erode (input_image, kernel, iterations = 1) dilation_image = cv2.dilate ( input_image, kernel, iterations = 1) cv2.imshow ('Input', input_image) cv2.imshow (' Erosion', erosion_image) cv2.imshow ('Dilation', dilation_image) cv2.waitKey (0) #wait for a key to exit 







Blurring and expanding images on OpenCV in Python: StackOverflow Questions

Answer #1

They contain byte code, which is what the Python interpreter compiles the source to. This code is then executed by Python"s virtual machine.

Python"s documentation explains the definition like this:

Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because of the presence of the bytecode compiler. This means that source files can be run directly without explicitly creating an executable which is then run.

Answer #2

Well, I decided to workout myself on my question to solve above problem. What I wanted is to implement a simpl OCR using KNearest or SVM features in OpenCV. And below is what I did and how. ( it is just for learning how to use KNearest for simple OCR purposes).

1) My first question was about letter_recognition.data file that comes with OpenCV samples. I wanted to know what is inside that file.

It contains a letter, along with 16 features of that letter.

And this SOF helped me to find it. These 16 features are explained in the paperLetter Recognition Using Holland-Style Adaptive Classifiers. ( Although I didn"t understand some of the features at end)

2) Since I knew, without understanding all those features, it is difficult to do that method. I tried some other papers, but all were a little difficult for a beginner.

So I just decided to take all the pixel values as my features. (I was not worried about accuracy or performance, I just wanted it to work, at least with the least accuracy)

I took below image for my training data:

enter image description here

( I know the amount of training data is less. But, since all letters are of same font and size, I decided to try on this).

To prepare the data for training, I made a small code in OpenCV. It does following things:

  1. It loads the image.
  2. Selects the digits ( obviously by contour finding and applying constraints on area and height of letters to avoid false detections).
  3. Draws the bounding rectangle around one letter and wait for key press manually. This time we press the digit key ourselves corresponding to the letter in box.
  4. Once corresponding digit key is pressed, it resizes this box to 10x10 and saves 100 pixel values in an array (here, samples) and corresponding manually entered digit in another array(here, responses).
  5. Then save both the arrays in separate txt files.

At the end of manual classification of digits, all the digits in the train data( train.png) are labeled manually by ourselves, image will look like below:

enter image description here

Below is the code I used for above purpose ( of course, not so clean):

import sys

import numpy as np
import cv2

im = cv2.imread("pitrain.png")
im3 = im.copy()

gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray,(5,5),0)
thresh = cv2.adaptiveThreshold(blur,255,1,1,11,2)

#################      Now finding Contours         ###################

contours,hierarchy = cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)

samples =  np.empty((0,100))
responses = []
keys = [i for i in range(48,58)]

for cnt in contours:
    if cv2.contourArea(cnt)>50:
        [x,y,w,h] = cv2.boundingRect(cnt)

        if  h>28:
            cv2.rectangle(im,(x,y),(x+w,y+h),(0,0,255),2)
            roi = thresh[y:y+h,x:x+w]
            roismall = cv2.resize(roi,(10,10))
            cv2.imshow("norm",im)
            key = cv2.waitKey(0)

            if key == 27:  # (escape to quit)
                sys.exit()
            elif key in keys:
                responses.append(int(chr(key)))
                sample = roismall.reshape((1,100))
                samples = np.append(samples,sample,0)

responses = np.array(responses,np.float32)
responses = responses.reshape((responses.size,1))
print "training complete"

np.savetxt("generalsamples.data",samples)
np.savetxt("generalresponses.data",responses)

Now we enter in to training and testing part.

For testing part I used below image, which has same type of letters I used to train.

enter image description here

For training we do as follows:

  1. Load the txt files we already saved earlier
  2. create a instance of classifier we are using ( here, it is KNearest)
  3. Then we use KNearest.train function to train the data

For testing purposes, we do as follows:

  1. We load the image used for testing
  2. process the image as earlier and extract each digit using contour methods
  3. Draw bounding box for it, then resize to 10x10, and store its pixel values in an array as done earlier.
  4. Then we use KNearest.find_nearest() function to find the nearest item to the one we gave. ( If lucky, it recognises the correct digit.)

I included last two steps ( training and testing) in single code below:

import cv2
import numpy as np

#######   training part    ############### 
samples = np.loadtxt("generalsamples.data",np.float32)
responses = np.loadtxt("generalresponses.data",np.float32)
responses = responses.reshape((responses.size,1))

model = cv2.KNearest()
model.train(samples,responses)

############################# testing part  #########################

im = cv2.imread("pi.png")
out = np.zeros(im.shape,np.uint8)
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
thresh = cv2.adaptiveThreshold(gray,255,1,1,11,2)

contours,hierarchy = cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)

for cnt in contours:
    if cv2.contourArea(cnt)>50:
        [x,y,w,h] = cv2.boundingRect(cnt)
        if  h>28:
            cv2.rectangle(im,(x,y),(x+w,y+h),(0,255,0),2)
            roi = thresh[y:y+h,x:x+w]
            roismall = cv2.resize(roi,(10,10))
            roismall = roismall.reshape((1,100))
            roismall = np.float32(roismall)
            retval, results, neigh_resp, dists = model.find_nearest(roismall, k = 1)
            string = str(int((results[0][0])))
            cv2.putText(out,string,(x,y+h),0,1,(0,255,0))

cv2.imshow("im",im)
cv2.imshow("out",out)
cv2.waitKey(0)

And it worked, below is the result I got:

enter image description here


Here it worked with 100% accuracy. I assume this is because all the digits are of same kind and same size.

But any way, this is a good start to go for beginners ( I hope so).

Answer #3

If you"re just wanting (semi) contiguous regions, there"s already an easy implementation in Python: SciPy"s ndimage.morphology module. This is a fairly common image morphology operation.


Basically, you have 5 steps:

def find_paws(data, smooth_radius=5, threshold=0.0001):
    data = sp.ndimage.uniform_filter(data, smooth_radius)
    thresh = data > threshold
    filled = sp.ndimage.morphology.binary_fill_holes(thresh)
    coded_paws, num_paws = sp.ndimage.label(filled)
    data_slices = sp.ndimage.find_objects(coded_paws)
    return object_slices
  1. Blur the input data a bit to make sure the paws have a continuous footprint. (It would be more efficient to just use a larger kernel (the structure kwarg to the various scipy.ndimage.morphology functions) but this isn"t quite working properly for some reason...)

  2. Threshold the array so that you have a boolean array of places where the pressure is over some threshold value (i.e. thresh = data > value)

  3. Fill any internal holes, so that you have cleaner regions (filled = sp.ndimage.morphology.binary_fill_holes(thresh))

  4. Find the separate contiguous regions (coded_paws, num_paws = sp.ndimage.label(filled)). This returns an array with the regions coded by number (each region is a contiguous area of a unique integer (1 up to the number of paws) with zeros everywhere else)).

  5. Isolate the contiguous regions using data_slices = sp.ndimage.find_objects(coded_paws). This returns a list of tuples of slice objects, so you could get the region of the data for each paw with [data[x] for x in data_slices]. Instead, we"ll draw a rectangle based on these slices, which takes slightly more work.


The two animations below show your "Overlapping Paws" and "Grouped Paws" example data. This method seems to be working perfectly. (And for whatever it"s worth, this runs much more smoothly than the GIF images below on my machine, so the paw detection algorithm is fairly fast...)

Overlapping Paws Grouped Paws


Here"s a full example (now with much more detailed explanations). The vast majority of this is reading the input and making an animation. The actual paw detection is only 5 lines of code.

import numpy as np
import scipy as sp
import scipy.ndimage

import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle

def animate(input_filename):
    """Detects paws and animates the position and raw data of each frame
    in the input file"""
    # With matplotlib, it"s much, much faster to just update the properties
    # of a display object than it is to create a new one, so we"ll just update
    # the data and position of the same objects throughout this animation...

    infile = paw_file(input_filename)

    # Since we"re making an animation with matplotlib, we need 
    # ion() instead of show()...
    plt.ion()
    fig = plt.figure()
    ax = fig.add_subplot(111)
    fig.suptitle(input_filename)

    # Make an image based on the first frame that we"ll update later
    # (The first frame is never actually displayed)
    im = ax.imshow(infile.next()[1])

    # Make 4 rectangles that we can later move to the position of each paw
    rects = [Rectangle((0,0), 1,1, fc="none", ec="red") for i in range(4)]
    [ax.add_patch(rect) for rect in rects]

    title = ax.set_title("Time 0.0 ms")

    # Process and display each frame
    for time, frame in infile:
        paw_slices = find_paws(frame)

        # Hide any rectangles that might be visible
        [rect.set_visible(False) for rect in rects]

        # Set the position and size of a rectangle for each paw and display it
        for slice, rect in zip(paw_slices, rects):
            dy, dx = slice
            rect.set_xy((dx.start, dy.start))
            rect.set_width(dx.stop - dx.start + 1)
            rect.set_height(dy.stop - dy.start + 1)
            rect.set_visible(True)

        # Update the image data and title of the plot
        title.set_text("Time %0.2f ms" % time)
        im.set_data(frame)
        im.set_clim([frame.min(), frame.max()])
        fig.canvas.draw()

def find_paws(data, smooth_radius=5, threshold=0.0001):
    """Detects and isolates contiguous regions in the input array"""
    # Blur the input data a bit so the paws have a continous footprint 
    data = sp.ndimage.uniform_filter(data, smooth_radius)
    # Threshold the blurred data (this needs to be a bit > 0 due to the blur)
    thresh = data > threshold
    # Fill any interior holes in the paws to get cleaner regions...
    filled = sp.ndimage.morphology.binary_fill_holes(thresh)
    # Label each contiguous paw
    coded_paws, num_paws = sp.ndimage.label(filled)
    # Isolate the extent of each paw
    data_slices = sp.ndimage.find_objects(coded_paws)
    return data_slices

def paw_file(filename):
    """Returns a iterator that yields the time and data in each frame
    The infile is an ascii file of timesteps formatted similar to this:

    Frame 0 (0.00 ms)
    0.0 0.0 0.0
    0.0 0.0 0.0

    Frame 1 (0.53 ms)
    0.0 0.0 0.0
    0.0 0.0 0.0
    ...
    """
    with open(filename) as infile:
        while True:
            try:
                time, data = read_frame(infile)
                yield time, data
            except StopIteration:
                break

def read_frame(infile):
    """Reads a frame from the infile."""
    frame_header = infile.next().strip().split()
    time = float(frame_header[-2][1:])
    data = []
    while True:
        line = infile.next().strip().split()
        if line == []:
            break
        data.append(line)
    return time, np.array(data, dtype=np.float)

if __name__ == "__main__":
    animate("Overlapping paws.bin")
    animate("Grouped up paws.bin")
    animate("Normal measurement.bin")

Update: As far as identifying which paw is in contact with the sensor at what times, the simplest solution is to just do the same analysis, but use all of the data at once. (i.e. stack the input into a 3D array, and work with it, instead of the individual time frames.) Because SciPy"s ndimage functions are meant to work with n-dimensional arrays, we don"t have to modify the original paw-finding function at all.

# This uses functions (and imports) in the previous code example!!
def paw_regions(infile):
    # Read in and stack all data together into a 3D array
    data, time = [], []
    for t, frame in paw_file(infile):
        time.append(t)
        data.append(frame)
    data = np.dstack(data)
    time = np.asarray(time)

    # Find and label the paw impacts
    data_slices, coded_paws = find_paws(data, smooth_radius=4)

    # Sort by time of initial paw impact... This way we can determine which
    # paws are which relative to the first paw with a simple modulo 4.
    # (Assuming a 4-legged dog, where all 4 paws contacted the sensor)
    data_slices.sort(key=lambda dat_slice: dat_slice[2].start)

    # Plot up a simple analysis
    fig = plt.figure()
    ax1 = fig.add_subplot(2,1,1)
    annotate_paw_prints(time, data, data_slices, ax=ax1)
    ax2 = fig.add_subplot(2,1,2)
    plot_paw_impacts(time, data_slices, ax=ax2)
    fig.suptitle(infile)

def plot_paw_impacts(time, data_slices, ax=None):
    if ax is None:
        ax = plt.gca()

    # Group impacts by paw...
    for i, dat_slice in enumerate(data_slices):
        dx, dy, dt = dat_slice
        paw = i%4 + 1
        # Draw a bar over the time interval where each paw is in contact
        ax.barh(bottom=paw, width=time[dt].ptp(), height=0.2, 
                left=time[dt].min(), align="center", color="red")
    ax.set_yticks(range(1, 5))
    ax.set_yticklabels(["Paw 1", "Paw 2", "Paw 3", "Paw 4"])
    ax.set_xlabel("Time (ms) Since Beginning of Experiment")
    ax.yaxis.grid(True)
    ax.set_title("Periods of Paw Contact")

def annotate_paw_prints(time, data, data_slices, ax=None):
    if ax is None:
        ax = plt.gca()

    # Display all paw impacts (sum over time)
    ax.imshow(data.sum(axis=2).T)

    # Annotate each impact with which paw it is
    # (Relative to the first paw to hit the sensor)
    x, y = [], []
    for i, region in enumerate(data_slices):
        dx, dy, dz = region
        # Get x,y center of slice...
        x0 = 0.5 * (dx.start + dx.stop)
        y0 = 0.5 * (dy.start + dy.stop)
        x.append(x0); y.append(y0)

        # Annotate the paw impacts         
        ax.annotate("Paw %i" % (i%4 +1), (x0, y0),  
            color="red", ha="center", va="bottom")

    # Plot line connecting paw impacts
    ax.plot(x,y, "-wo")
    ax.axis("image")
    ax.set_title("Order of Steps")

alt text


alt text


alt text

Answer #4

General idea

Option 1: Load both images as arrays (scipy.misc.imread) and calculate an element-wise (pixel-by-pixel) difference. Calculate the norm of the difference.

Option 2: Load both images. Calculate some feature vector for each of them (like a histogram). Calculate distance between feature vectors rather than images.

However, there are some decisions to make first.

Questions

You should answer these questions first:

  • Are images of the same shape and dimension?

    If not, you may need to resize or crop them. PIL library will help to do it in Python.

    If they are taken with the same settings and the same device, they are probably the same.

  • Are images well-aligned?

    If not, you may want to run cross-correlation first, to find the best alignment first. SciPy has functions to do it.

    If the camera and the scene are still, the images are likely to be well-aligned.

  • Is exposure of the images always the same? (Is lightness/contrast the same?)

    If not, you may want to normalize images.

    But be careful, in some situations this may do more wrong than good. For example, a single bright pixel on a dark background will make the normalized image very different.

  • Is color information important?

    If you want to notice color changes, you will have a vector of color values per point, rather than a scalar value as in gray-scale image. You need more attention when writing such code.

  • Are there distinct edges in the image? Are they likely to move?

    If yes, you can apply edge detection algorithm first (e.g. calculate gradient with Sobel or Prewitt transform, apply some threshold), then compare edges on the first image to edges on the second.

  • Is there noise in the image?

    All sensors pollute the image with some amount of noise. Low-cost sensors have more noise. You may wish to apply some noise reduction before you compare images. Blur is the most simple (but not the best) approach here.

  • What kind of changes do you want to notice?

    This may affect the choice of norm to use for the difference between images.

    Consider using Manhattan norm (the sum of the absolute values) or zero norm (the number of elements not equal to zero) to measure how much the image has changed. The former will tell you how much the image is off, the latter will tell only how many pixels differ.

Example

I assume your images are well-aligned, the same size and shape, possibly with different exposure. For simplicity, I convert them to grayscale even if they are color (RGB) images.

You will need these imports:

import sys

from scipy.misc import imread
from scipy.linalg import norm
from scipy import sum, average

Main function, read two images, convert to grayscale, compare and print results:

def main():
    file1, file2 = sys.argv[1:1+2]
    # read images as 2D arrays (convert to grayscale for simplicity)
    img1 = to_grayscale(imread(file1).astype(float))
    img2 = to_grayscale(imread(file2).astype(float))
    # compare
    n_m, n_0 = compare_images(img1, img2)
    print "Manhattan norm:", n_m, "/ per pixel:", n_m/img1.size
    print "Zero norm:", n_0, "/ per pixel:", n_0*1.0/img1.size

How to compare. img1 and img2 are 2D SciPy arrays here:

def compare_images(img1, img2):
    # normalize to compensate for exposure difference, this may be unnecessary
    # consider disabling it
    img1 = normalize(img1)
    img2 = normalize(img2)
    # calculate the difference and its norms
    diff = img1 - img2  # elementwise for scipy arrays
    m_norm = sum(abs(diff))  # Manhattan norm
    z_norm = norm(diff.ravel(), 0)  # Zero norm
    return (m_norm, z_norm)

If the file is a color image, imread returns a 3D array, average RGB channels (the last array axis) to obtain intensity. No need to do it for grayscale images (e.g. .pgm):

def to_grayscale(arr):
    "If arr is a color image (3D array), convert it to grayscale (2D array)."
    if len(arr.shape) == 3:
        return average(arr, -1)  # average over the last axis (color channels)
    else:
        return arr

Normalization is trivial, you may choose to normalize to [0,1] instead of [0,255]. arr is a SciPy array here, so all operations are element-wise:

def normalize(arr):
    rng = arr.max()-arr.min()
    amin = arr.min()
    return (arr-amin)*255/rng

Run the main function:

if __name__ == "__main__":
    main()

Now you can put this all in a script and run against two images. If we compare image to itself, there is no difference:

$ python compare.py one.jpg one.jpg
Manhattan norm: 0.0 / per pixel: 0.0
Zero norm: 0 / per pixel: 0.0

If we blur the image and compare to the original, there is some difference:

$ python compare.py one.jpg one-blurred.jpg 
Manhattan norm: 92605183.67 / per pixel: 13.4210411116
Zero norm: 6900000 / per pixel: 1.0

P.S. Entire compare.py script.

Update: relevant techniques

As the question is about a video sequence, where frames are likely to be almost the same, and you look for something unusual, I"d like to mention some alternative approaches which may be relevant:

  • background subtraction and segmentation (to detect foreground objects)
  • sparse optical flow (to detect motion)
  • comparing histograms or some other statistics instead of images

I strongly recommend taking a look at “Learning OpenCV” book, Chapters 9 (Image parts and segmentation) and 10 (Tracking and motion). The former teaches to use Background subtraction method, the latter gives some info on optical flow methods. All methods are implemented in OpenCV library. If you use Python, I suggest to use OpenCV ≥ 2.3, and its cv2 Python module.

The most simple version of the background subtraction:

  • learn the average value Œº and standard deviation œÉ for every pixel of the background
  • compare current pixel values to the range of (Œº-2œÉ,Œº+2œÉ) or (Œº-œÉ,Œº+œÉ)

More advanced versions make take into account time series for every pixel and handle non-static scenes (like moving trees or grass).

The idea of optical flow is to take two or more frames, and assign velocity vector to every pixel (dense optical flow) or to some of them (sparse optical flow). To estimate sparse optical flow, you may use Lucas-Kanade method (it is also implemented in OpenCV). Obviously, if there is a lot of flow (high average over max values of the velocity field), then something is moving in the frame, and subsequent images are more different.

Comparing histograms may help to detect sudden changes between consecutive frames. This approach was used in Courbon et al, 2010:

Similarity of consecutive frames. The distance between two consecutive frames is measured. If it is too high, it means that the second frame is corrupted and thus the image is eliminated. The Kullback–Leibler distance, or mutual entropy, on the histograms of the two frames:

$$ d(p,q) = sum_i p(i) log (p(i)/q(i)) $$

where p and q are the histograms of the frames is used. The threshold is fixed on 0.2.

Answer #5

Nikie"s answer solved my problem, but his answer was in Mathematica. So I thought I should give its OpenCV adaptation here. But after implementing I could see that OpenCV code is much bigger than nikie"s mathematica code. And also, I couldn"t find interpolation method done by nikie in OpenCV ( although it can be done using scipy, i will tell it when time comes.)

1. Image PreProcessing ( closing operation )

import cv2
import numpy as np

img = cv2.imread("dave.jpg")
img = cv2.GaussianBlur(img,(5,5),0)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
mask = np.zeros((gray.shape),np.uint8)
kernel1 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(11,11))

close = cv2.morphologyEx(gray,cv2.MORPH_CLOSE,kernel1)
div = np.float32(gray)/(close)
res = np.uint8(cv2.normalize(div,div,0,255,cv2.NORM_MINMAX))
res2 = cv2.cvtColor(res,cv2.COLOR_GRAY2BGR)

Result :

Result of closing

2. Finding Sudoku Square and Creating Mask Image

thresh = cv2.adaptiveThreshold(res,255,0,1,19,2)
contour,hier = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

max_area = 0
best_cnt = None
for cnt in contour:
    area = cv2.contourArea(cnt)
    if area > 1000:
        if area > max_area:
            max_area = area
            best_cnt = cnt

cv2.drawContours(mask,[best_cnt],0,255,-1)
cv2.drawContours(mask,[best_cnt],0,0,2)

res = cv2.bitwise_and(res,mask)

Result :

enter image description here

3. Finding Vertical lines

kernelx = cv2.getStructuringElement(cv2.MORPH_RECT,(2,10))

dx = cv2.Sobel(res,cv2.CV_16S,1,0)
dx = cv2.convertScaleAbs(dx)
cv2.normalize(dx,dx,0,255,cv2.NORM_MINMAX)
ret,close = cv2.threshold(dx,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
close = cv2.morphologyEx(close,cv2.MORPH_DILATE,kernelx,iterations = 1)

contour, hier = cv2.findContours(close,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
for cnt in contour:
    x,y,w,h = cv2.boundingRect(cnt)
    if h/w > 5:
        cv2.drawContours(close,[cnt],0,255,-1)
    else:
        cv2.drawContours(close,[cnt],0,0,-1)
close = cv2.morphologyEx(close,cv2.MORPH_CLOSE,None,iterations = 2)
closex = close.copy()

Result :

enter image description here

4. Finding Horizontal Lines

kernely = cv2.getStructuringElement(cv2.MORPH_RECT,(10,2))
dy = cv2.Sobel(res,cv2.CV_16S,0,2)
dy = cv2.convertScaleAbs(dy)
cv2.normalize(dy,dy,0,255,cv2.NORM_MINMAX)
ret,close = cv2.threshold(dy,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
close = cv2.morphologyEx(close,cv2.MORPH_DILATE,kernely)

contour, hier = cv2.findContours(close,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
for cnt in contour:
    x,y,w,h = cv2.boundingRect(cnt)
    if w/h > 5:
        cv2.drawContours(close,[cnt],0,255,-1)
    else:
        cv2.drawContours(close,[cnt],0,0,-1)

close = cv2.morphologyEx(close,cv2.MORPH_DILATE,None,iterations = 2)
closey = close.copy()

Result :

enter image description here

Of course, this one is not so good.

5. Finding Grid Points

res = cv2.bitwise_and(closex,closey)

Result :

enter image description here

6. Correcting the defects

Here, nikie does some kind of interpolation, about which I don"t have much knowledge. And i couldn"t find any corresponding function for this OpenCV. (may be it is there, i don"t know).

Check out this SOF which explains how to do this using SciPy, which I don"t want to use : Image transformation in OpenCV

So, here I took 4 corners of each sub-square and applied warp Perspective to each.

For that, first we find the centroids.

contour, hier = cv2.findContours(res,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
centroids = []
for cnt in contour:
    mom = cv2.moments(cnt)
    (x,y) = int(mom["m10"]/mom["m00"]), int(mom["m01"]/mom["m00"])
    cv2.circle(img,(x,y),4,(0,255,0),-1)
    centroids.append((x,y))

But resulting centroids won"t be sorted. Check out below image to see their order:

enter image description here

So we sort them from left to right, top to bottom.

centroids = np.array(centroids,dtype = np.float32)
c = centroids.reshape((100,2))
c2 = c[np.argsort(c[:,1])]

b = np.vstack([c2[i*10:(i+1)*10][np.argsort(c2[i*10:(i+1)*10,0])] for i in xrange(10)])
bm = b.reshape((10,10,2))

Now see below their order :

enter image description here

Finally we apply the transformation and create a new image of size 450x450.

output = np.zeros((450,450,3),np.uint8)
for i,j in enumerate(b):
    ri = i/10
    ci = i%10
    if ci != 9 and ri!=9:
        src = bm[ri:ri+2, ci:ci+2 , :].reshape((4,2))
        dst = np.array( [ [ci*50,ri*50],[(ci+1)*50-1,ri*50],[ci*50,(ri+1)*50-1],[(ci+1)*50-1,(ri+1)*50-1] ], np.float32)
        retval = cv2.getPerspectiveTransform(src,dst)
        warp = cv2.warpPerspective(res2,retval,(450,450))
        output[ri*50:(ri+1)*50-1 , ci*50:(ci+1)*50-1] = warp[ri*50:(ri+1)*50-1 , ci*50:(ci+1)*50-1].copy()

Result :

enter image description here

The result is almost same as nikie"s, but code length is large. May be, better methods are available out there, but until then, this works OK.

Regards ARK.

Blurring and expanding images on OpenCV in Python: StackOverflow Questions

How do I merge two dictionaries in a single expression (taking union of dictionaries)?

Question by Carl Meyer

I have two Python dictionaries, and I want to write a single expression that returns these two dictionaries, merged (i.e. taking the union). The update() method would be what I need, if it returned its result instead of modifying a dictionary in-place.

>>> x = {"a": 1, "b": 2}
>>> y = {"b": 10, "c": 11}
>>> z = x.update(y)
>>> print(z)
None
>>> x
{"a": 1, "b": 10, "c": 11}

How can I get that final merged dictionary in z, not x?

(To be extra-clear, the last-one-wins conflict-handling of dict.update() is what I"m looking for as well.)

List changes unexpectedly after assignment. Why is this and how can I prevent it?

While using new_list = my_list, any modifications to new_list changes my_list every time. Why is this, and how can I clone or copy the list to prevent it?

Can someone explain __all__ in Python?

Question by varikin

I have been using Python more and more, and I keep seeing the variable __all__ set in different __init__.py files. Can someone explain what this does?

How do I expand the output display to see more columns of a Pandas DataFrame?

Is there a way to widen the display of output in either interactive or script-execution mode?

Specifically, I am using the describe() function on a Pandas DataFrame. When the DataFrame is five columns (labels) wide, I get the descriptive statistics that I want. However, if the DataFrame has any more columns, the statistics are suppressed and something like this is returned:

>> Index: 8 entries, count to max
>> Data columns:
>> x1          8  non-null values
>> x2          8  non-null values
>> x3          8  non-null values
>> x4          8  non-null values
>> x5          8  non-null values
>> x6          8  non-null values
>> x7          8  non-null values

The "8" value is given whether there are 6 or 7 columns. What does the "8" refer to?

I have already tried dragging the IDLE window larger, as well as increasing the "Configure IDLE" width options, to no avail.

My purpose in using Pandas and describe() is to avoid using a second program like Stata to do basic data manipulation and investigation.

List of lists changes reflected across sublists unexpectedly

Question by Charles Anderson

I needed to create a list of lists in Python, so I typed the following:

my_list = [[1] * 4] * 3

The list looked like this:

[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]  

Then I changed one of the innermost values:

my_list[0][0] = 5

Now my list looks like this:

[[5, 1, 1, 1], [5, 1, 1, 1], [5, 1, 1, 1]]  

which is not what I wanted or expected. Can someone please explain what"s going on, and how to get around it?

What does "super" do in Python? - difference between super().__init__() and explicit superclass __init__()

What"s the difference between:

class Child(SomeBaseClass):
    def __init__(self):
        super(Child, self).__init__()

and:

class Child(SomeBaseClass):
    def __init__(self):
        SomeBaseClass.__init__(self)

I"ve seen super being used quite a lot in classes with only single inheritance. I can see why you"d use it in multiple inheritance but am unclear as to what the advantages are of using it in this kind of situation.

"is" operator behaves unexpectedly with integers

Question by Greg Hewgill

Why does the following behave unexpectedly in Python?

>>> a = 256
>>> b = 256
>>> a is b
True           # This is an expected result
>>> a = 257
>>> b = 257
>>> a is b
False          # What happened here? Why is this False?
>>> 257 is 257
True           # Yet the literal numbers compare properly

I am using Python 2.5.2. Trying some different versions of Python, it appears that Python 2.3.3 shows the above behaviour between 99 and 100.

Based on the above, I can hypothesize that Python is internally implemented such that "small" integers are stored in a different way than larger integers and the is operator can tell the difference. Why the leaky abstraction? What is a better way of comparing two arbitrary objects to see whether they are the same when I don"t know in advance whether they are numbers or not?

How can I explicitly free memory in Python?

I wrote a Python program that acts on a large input file to create a few million objects representing triangles. The algorithm is:

  1. read an input file
  2. process the file and create a list of triangles, represented by their vertices
  3. output the vertices in the OFF format: a list of vertices followed by a list of triangles. The triangles are represented by indices into the list of vertices

The requirement of OFF that I print out the complete list of vertices before I print out the triangles means that I have to hold the list of triangles in memory before I write the output to file. In the meanwhile I"m getting memory errors because of the sizes of the lists.

What is the best way to tell Python that I no longer need some of the data, and it can be freed?

Python string.replace regular expression

I have a parameter file of the form:

parameter-name parameter-value

Where the parameters may be in any order but there is only one parameter per line. I want to replace one parameter"s parameter-value with a new value.

I am using a line replace function posted previously to replace the line which uses Python"s string.replace(pattern, sub). The regular expression that I"m using works for instance in vim but doesn"t appear to work in string.replace().

Here is the regular expression that I"m using:

line.replace("^.*interfaceOpDataFile.*$/i", "interfaceOpDataFile %s" % (fileIn))

Where "interfaceOpDataFile" is the parameter name that I"m replacing (/i for case-insensitive) and the new parameter value is the contents of the fileIn variable.

Is there a way to get Python to recognize this regular expression or else is there another way to accomplish this task?

Expanding tuples into arguments

Is there a way to expand a Python tuple into a function - as actual parameters?

For example, here expand() does the magic:

some_tuple = (1, "foo", "bar")

def myfun(number, str1, str2):
    return (number * 2, str1 + str2, str2 + str1)

myfun(expand(some_tuple)) # (2, "foobar", "barfoo")

I know one could define myfun as myfun((a, b, c)), but of course there may be legacy code. Thanks

Answer #1

The Python 3 range() object doesn"t produce numbers immediately; it is a smart sequence object that produces numbers on demand. All it contains is your start, stop and step values, then as you iterate over the object the next integer is calculated each iteration.

The object also implements the object.__contains__ hook, and calculates if your number is part of its range. Calculating is a (near) constant time operation *. There is never a need to scan through all possible integers in the range.

From the range() object documentation:

The advantage of the range type over a regular list or tuple is that a range object will always take the same (small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and step values, calculating individual items and subranges as needed).

So at a minimum, your range() object would do:

class my_range:
    def __init__(self, start, stop=None, step=1, /):
        if stop is None:
            start, stop = 0, start
        self.start, self.stop, self.step = start, stop, step
        if step < 0:
            lo, hi, step = stop, start, -step
        else:
            lo, hi = start, stop
        self.length = 0 if lo > hi else ((hi - lo - 1) // step) + 1

    def __iter__(self):
        current = self.start
        if self.step < 0:
            while current > self.stop:
                yield current
                current += self.step
        else:
            while current < self.stop:
                yield current
                current += self.step

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        if i < 0:
            i += self.length
        if 0 <= i < self.length:
            return self.start + i * self.step
        raise IndexError("my_range object index out of range")

    def __contains__(self, num):
        if self.step < 0:
            if not (self.stop < num <= self.start):
                return False
        else:
            if not (self.start <= num < self.stop):
                return False
        return (num - self.start) % self.step == 0

This is still missing several things that a real range() supports (such as the .index() or .count() methods, hashing, equality testing, or slicing), but should give you an idea.

I also simplified the __contains__ implementation to only focus on integer tests; if you give a real range() object a non-integer value (including subclasses of int), a slow scan is initiated to see if there is a match, just as if you use a containment test against a list of all the contained values. This was done to continue to support other numeric types that just happen to support equality testing with integers but are not expected to support integer arithmetic as well. See the original Python issue that implemented the containment test.


* Near constant time because Python integers are unbounded and so math operations also grow in time as N grows, making this a O(log N) operation. Since it’s all executed in optimised C code and Python stores integer values in 30-bit chunks, you’d run out of memory before you saw any performance impact due to the size of the integers involved here.

Answer #2

You have four main options for converting types in pandas:

  1. to_numeric() - provides functionality to safely convert non-numeric types (e.g. strings) to a suitable numeric type. (See also to_datetime() and to_timedelta().)

  2. astype() - convert (almost) any type to (almost) any other type (even if it"s not necessarily sensible to do so). Also allows you to convert to categorial types (very useful).

  3. infer_objects() - a utility method to convert object columns holding Python objects to a pandas type if possible.

  4. convert_dtypes() - convert DataFrame columns to the "best possible" dtype that supports pd.NA (pandas" object to indicate a missing value).

Read on for more detailed explanations and usage of each of these methods.


1. to_numeric()

The best way to convert one or more columns of a DataFrame to numeric values is to use pandas.to_numeric().

This function will try to change non-numeric objects (such as strings) into integers or floating point numbers as appropriate.

Basic usage

The input to to_numeric() is a Series or a single column of a DataFrame.

>>> s = pd.Series(["8", 6, "7.5", 3, "0.9"]) # mixed string and numeric values
>>> s
0      8
1      6
2    7.5
3      3
4    0.9
dtype: object

>>> pd.to_numeric(s) # convert everything to float values
0    8.0
1    6.0
2    7.5
3    3.0
4    0.9
dtype: float64

As you can see, a new Series is returned. Remember to assign this output to a variable or column name to continue using it:

# convert Series
my_series = pd.to_numeric(my_series)

# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])

You can also use it to convert multiple columns of a DataFrame via the apply() method:

# convert all columns of DataFrame
df = df.apply(pd.to_numeric) # convert all columns of DataFrame

# convert just columns "a" and "b"
df[["a", "b"]] = df[["a", "b"]].apply(pd.to_numeric)

As long as your values can all be converted, that"s probably all you need.

Error handling

But what if some values can"t be converted to a numeric type?

to_numeric() also takes an errors keyword argument that allows you to force non-numeric values to be NaN, or simply ignore columns containing these values.

Here"s an example using a Series of strings s which has the object dtype:

>>> s = pd.Series(["1", "2", "4.7", "pandas", "10"])
>>> s
0         1
1         2
2       4.7
3    pandas
4        10
dtype: object

The default behaviour is to raise if it can"t convert a value. In this case, it can"t cope with the string "pandas":

>>> pd.to_numeric(s) # or pd.to_numeric(s, errors="raise")
ValueError: Unable to parse string

Rather than fail, we might want "pandas" to be considered a missing/bad numeric value. We can coerce invalid values to NaN as follows using the errors keyword argument:

>>> pd.to_numeric(s, errors="coerce")
0     1.0
1     2.0
2     4.7
3     NaN
4    10.0
dtype: float64

The third option for errors is just to ignore the operation if an invalid value is encountered:

>>> pd.to_numeric(s, errors="ignore")
# the original Series is returned untouched

This last option is particularly useful when you want to convert your entire DataFrame, but don"t not know which of our columns can be converted reliably to a numeric type. In that case just write:

df.apply(pd.to_numeric, errors="ignore")

The function will be applied to each column of the DataFrame. Columns that can be converted to a numeric type will be converted, while columns that cannot (e.g. they contain non-digit strings or dates) will be left alone.

Downcasting

By default, conversion with to_numeric() will give you either a int64 or float64 dtype (or whatever integer width is native to your platform).

That"s usually what you want, but what if you wanted to save some memory and use a more compact dtype, like float32, or int8?

to_numeric() gives you the option to downcast to either "integer", "signed", "unsigned", "float". Here"s an example for a simple series s of integer type:

>>> s = pd.Series([1, 2, -7])
>>> s
0    1
1    2
2   -7
dtype: int64

Downcasting to "integer" uses the smallest possible integer that can hold the values:

>>> pd.to_numeric(s, downcast="integer")
0    1
1    2
2   -7
dtype: int8

Downcasting to "float" similarly picks a smaller than normal floating type:

>>> pd.to_numeric(s, downcast="float")
0    1.0
1    2.0
2   -7.0
dtype: float32

2. astype()

The astype() method enables you to be explicit about the dtype you want your DataFrame or Series to have. It"s very versatile in that you can try and go from one type to the any other.

Basic usage

Just pick a type: you can use a NumPy dtype (e.g. np.int16), some Python types (e.g. bool), or pandas-specific types (like the categorical dtype).

Call the method on the object you want to convert and astype() will try and convert it for you:

# convert all DataFrame columns to the int64 dtype
df = df.astype(int)

# convert column "a" to int64 dtype and "b" to complex type
df = df.astype({"a": int, "b": complex})

# convert Series to float16 type
s = s.astype(np.float16)

# convert Series to Python strings
s = s.astype(str)

# convert Series to categorical type - see docs for more details
s = s.astype("category")

Notice I said "try" - if astype() does not know how to convert a value in the Series or DataFrame, it will raise an error. For example if you have a NaN or inf value you"ll get an error trying to convert it to an integer.

As of pandas 0.20.0, this error can be suppressed by passing errors="ignore". Your original object will be return untouched.

Be careful

astype() is powerful, but it will sometimes convert values "incorrectly". For example:

>>> s = pd.Series([1, 2, -7])
>>> s
0    1
1    2
2   -7
dtype: int64

These are small integers, so how about converting to an unsigned 8-bit type to save memory?

>>> s.astype(np.uint8)
0      1
1      2
2    249
dtype: uint8

The conversion worked, but the -7 was wrapped round to become 249 (i.e. 28 - 7)!

Trying to downcast using pd.to_numeric(s, downcast="unsigned") instead could help prevent this error.


3. infer_objects()

Version 0.21.0 of pandas introduced the method infer_objects() for converting columns of a DataFrame that have an object datatype to a more specific type (soft conversions).

For example, here"s a DataFrame with two columns of object type. One holds actual integers and the other holds strings representing integers:

>>> df = pd.DataFrame({"a": [7, 1, 5], "b": ["3","2","1"]}, dtype="object")
>>> df.dtypes
a    object
b    object
dtype: object

Using infer_objects(), you can change the type of column "a" to int64:

>>> df = df.infer_objects()
>>> df.dtypes
a     int64
b    object
dtype: object

Column "b" has been left alone since its values were strings, not integers. If you wanted to try and force the conversion of both columns to an integer type, you could use df.astype(int) instead.


4. convert_dtypes()

Version 1.0 and above includes a method convert_dtypes() to convert Series and DataFrame columns to the best possible dtype that supports the pd.NA missing value.

Here "best possible" means the type most suited to hold the values. For example, this a pandas integer type if all of the values are integers (or missing values): an object column of Python integer objects is converted to Int64, a column of NumPy int32 values will become the pandas dtype Int32.

With our object DataFrame df, we get the following result:

>>> df.convert_dtypes().dtypes                                             
a     Int64
b    string
dtype: object

Since column "a" held integer values, it was converted to the Int64 type (which is capable of holding missing values, unlike int64).

Column "b" contained string objects, so was changed to pandas" string dtype.

By default, this method will infer the type from object values in each column. We can change this by passing infer_objects=False:

>>> df.convert_dtypes(infer_objects=False).dtypes                          
a    object
b    string
dtype: object

Now column "a" remained an object column: pandas knows it can be described as an "integer" column (internally it ran infer_dtype) but didn"t infer exactly what dtype of integer it should have so did not convert it. Column "b" was again converted to "string" dtype as it was recognised as holding "string" values.

Answer #3

How to iterate over rows in a DataFrame in Pandas?

Answer: DON"T*!

Iteration in Pandas is an anti-pattern and is something you should only do when you have exhausted every other option. You should not use any function with "iter" in its name for more than a few thousand rows or you will have to get used to a lot of waiting.

Do you want to print a DataFrame? Use DataFrame.to_string().

Do you want to compute something? In that case, search for methods in this order (list modified from here):

  1. Vectorization
  2. Cython routines
  3. List Comprehensions (vanilla for loop)
  4. DataFrame.apply(): i)  Reductions that can be performed in Cython, ii) Iteration in Python space
  5. DataFrame.itertuples() and iteritems()
  6. DataFrame.iterrows()

iterrows and itertuples (both receiving many votes in answers to this question) should be used in very rare circumstances, such as generating row objects/nametuples for sequential processing, which is really the only thing these functions are useful for.

Appeal to Authority

The documentation page on iteration has a huge red warning box that says:

Iterating through pandas objects is generally slow. In many cases, iterating manually over the rows is not needed [...].

* It"s actually a little more complicated than "don"t". df.iterrows() is the correct answer to this question, but "vectorize your ops" is the better one. I will concede that there are circumstances where iteration cannot be avoided (for example, some operations where the result depends on the value computed for the previous row). However, it takes some familiarity with the library to know when. If you"re not sure whether you need an iterative solution, you probably don"t. PS: To know more about my rationale for writing this answer, skip to the very bottom.


Faster than Looping: Vectorization, Cython

A good number of basic operations and computations are "vectorised" by pandas (either through NumPy, or through Cythonized functions). This includes arithmetic, comparisons, (most) reductions, reshaping (such as pivoting), joins, and groupby operations. Look through the documentation on Essential Basic Functionality to find a suitable vectorised method for your problem.

If none exists, feel free to write your own using custom Cython extensions.


Next Best Thing: List Comprehensions*

List comprehensions should be your next port of call if 1) there is no vectorized solution available, 2) performance is important, but not important enough to go through the hassle of cythonizing your code, and 3) you"re trying to perform elementwise transformation on your code. There is a good amount of evidence to suggest that list comprehensions are sufficiently fast (and even sometimes faster) for many common Pandas tasks.

The formula is simple,

# Iterating over one column - `f` is some function that processes your data
result = [f(x) for x in df["col"]]
# Iterating over two columns, use `zip`
result = [f(x, y) for x, y in zip(df["col1"], df["col2"])]
# Iterating over multiple columns - same data type
result = [f(row[0], ..., row[n]) for row in df[["col1", ...,"coln"]].to_numpy()]
# Iterating over multiple columns - differing data type
result = [f(row[0], ..., row[n]) for row in zip(df["col1"], ..., df["coln"])]

If you can encapsulate your business logic into a function, you can use a list comprehension that calls it. You can make arbitrarily complex things work through the simplicity and speed of raw Python code.

Caveats

List comprehensions assume that your data is easy to work with - what that means is your data types are consistent and you don"t have NaNs, but this cannot always be guaranteed.

  1. The first one is more obvious, but when dealing with NaNs, prefer in-built pandas methods if they exist (because they have much better corner-case handling logic), or ensure your business logic includes appropriate NaN handling logic.
  2. When dealing with mixed data types you should iterate over zip(df["A"], df["B"], ...) instead of df[["A", "B"]].to_numpy() as the latter implicitly upcasts data to the most common type. As an example if A is numeric and B is string, to_numpy() will cast the entire array to string, which may not be what you want. Fortunately zipping your columns together is the most straightforward workaround to this.

*Your mileage may vary for the reasons outlined in the Caveats section above.


An Obvious Example

Let"s demonstrate the difference with a simple example of adding two pandas columns A + B. This is a vectorizable operaton, so it will be easy to contrast the performance of the methods discussed above.

Benchmarking code, for your reference. The line at the bottom measures a function written in numpandas, a style of Pandas that mixes heavily with NumPy to squeeze out maximum performance. Writing numpandas code should be avoided unless you know what you"re doing. Stick to the API where you can (i.e., prefer vec over vec_numpy).

I should mention, however, that it isn"t always this cut and dry. Sometimes the answer to "what is the best method for an operation" is "it depends on your data". My advice is to test out different approaches on your data before settling on one.


Further Reading

* Pandas string methods are "vectorized" in the sense that they are specified on the series but operate on each element. The underlying mechanisms are still iterative, because string operations are inherently hard to vectorize.


Why I Wrote this Answer

A common trend I notice from new users is to ask questions of the form "How can I iterate over my df to do X?". Showing code that calls iterrows() while doing something inside a for loop. Here is why. A new user to the library who has not been introduced to the concept of vectorization will likely envision the code that solves their problem as iterating over their data to do something. Not knowing how to iterate over a DataFrame, the first thing they do is Google it and end up here, at this question. They then see the accepted answer telling them how to, and they close their eyes and run this code without ever first questioning if iteration is not the right thing to do.

The aim of this answer is to help new users understand that iteration is not necessarily the solution to every problem, and that better, faster and more idiomatic solutions could exist, and that it is worth investing time in exploring them. I"m not trying to start a war of iteration vs. vectorization, but I want new users to be informed when developing solutions to their problems with this library.

Answer #4

In Python, what is the purpose of __slots__ and what are the cases one should avoid this?

TLDR:

The special attribute __slots__ allows you to explicitly state which instance attributes you expect your object instances to have, with the expected results:

  1. faster attribute access.
  2. space savings in memory.

The space savings is from

  1. Storing value references in slots instead of __dict__.
  2. Denying __dict__ and __weakref__ creation if parent classes deny them and you declare __slots__.

Quick Caveats

Small caveat, you should only declare a particular slot one time in an inheritance tree. For example:

class Base:
    __slots__ = "foo", "bar"

class Right(Base):
    __slots__ = "baz", 

class Wrong(Base):
    __slots__ = "foo", "bar", "baz"        # redundant foo and bar

Python doesn"t object when you get this wrong (it probably should), problems might not otherwise manifest, but your objects will take up more space than they otherwise should. Python 3.8:

>>> from sys import getsizeof
>>> getsizeof(Right()), getsizeof(Wrong())
(56, 72)

This is because the Base"s slot descriptor has a slot separate from the Wrong"s. This shouldn"t usually come up, but it could:

>>> w = Wrong()
>>> w.foo = "foo"
>>> Base.foo.__get__(w)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: foo
>>> Wrong.foo.__get__(w)
"foo"

The biggest caveat is for multiple inheritance - multiple "parent classes with nonempty slots" cannot be combined.

To accommodate this restriction, follow best practices: Factor out all but one or all parents" abstraction which their concrete class respectively and your new concrete class collectively will inherit from - giving the abstraction(s) empty slots (just like abstract base classes in the standard library).

See section on multiple inheritance below for an example.

Requirements:

  • To have attributes named in __slots__ to actually be stored in slots instead of a __dict__, a class must inherit from object (automatic in Python 3, but must be explicit in Python 2).

  • To prevent the creation of a __dict__, you must inherit from object and all classes in the inheritance must declare __slots__ and none of them can have a "__dict__" entry.

There are a lot of details if you wish to keep reading.

Why use __slots__: Faster attribute access.

The creator of Python, Guido van Rossum, states that he actually created __slots__ for faster attribute access.

It is trivial to demonstrate measurably significant faster access:

import timeit

class Foo(object): __slots__ = "foo",

class Bar(object): pass

slotted = Foo()
not_slotted = Bar()

def get_set_delete_fn(obj):
    def get_set_delete():
        obj.foo = "foo"
        obj.foo
        del obj.foo
    return get_set_delete

and

>>> min(timeit.repeat(get_set_delete_fn(slotted)))
0.2846834529991611
>>> min(timeit.repeat(get_set_delete_fn(not_slotted)))
0.3664822799983085

The slotted access is almost 30% faster in Python 3.5 on Ubuntu.

>>> 0.3664822799983085 / 0.2846834529991611
1.2873325658284342

In Python 2 on Windows I have measured it about 15% faster.

Why use __slots__: Memory Savings

Another purpose of __slots__ is to reduce the space in memory that each object instance takes up.

My own contribution to the documentation clearly states the reasons behind this:

The space saved over using __dict__ can be significant.

SQLAlchemy attributes a lot of memory savings to __slots__.

To verify this, using the Anaconda distribution of Python 2.7 on Ubuntu Linux, with guppy.hpy (aka heapy) and sys.getsizeof, the size of a class instance without __slots__ declared, and nothing else, is 64 bytes. That does not include the __dict__. Thank you Python for lazy evaluation again, the __dict__ is apparently not called into existence until it is referenced, but classes without data are usually useless. When called into existence, the __dict__ attribute is a minimum of 280 bytes additionally.

In contrast, a class instance with __slots__ declared to be () (no data) is only 16 bytes, and 56 total bytes with one item in slots, 64 with two.

For 64 bit Python, I illustrate the memory consumption in bytes in Python 2.7 and 3.6, for __slots__ and __dict__ (no slots defined) for each point where the dict grows in 3.6 (except for 0, 1, and 2 attributes):

       Python 2.7             Python 3.6
attrs  __slots__  __dict__*   __slots__  __dict__* | *(no slots defined)
none   16         56 + 272†   16         56 + 112† | †if __dict__ referenced
one    48         56 + 272    48         56 + 112
two    56         56 + 272    56         56 + 112
six    88         56 + 1040   88         56 + 152
11     128        56 + 1040   128        56 + 240
22     216        56 + 3344   216        56 + 408     
43     384        56 + 3344   384        56 + 752

So, in spite of smaller dicts in Python 3, we see how nicely __slots__ scale for instances to save us memory, and that is a major reason you would want to use __slots__.

Just for completeness of my notes, note that there is a one-time cost per slot in the class"s namespace of 64 bytes in Python 2, and 72 bytes in Python 3, because slots use data descriptors like properties, called "members".

>>> Foo.foo
<member "foo" of "Foo" objects>
>>> type(Foo.foo)
<class "member_descriptor">
>>> getsizeof(Foo.foo)
72

Demonstration of __slots__:

To deny the creation of a __dict__, you must subclass object. Everything subclasses object in Python 3, but in Python 2 you had to be explicit:

class Base(object): 
    __slots__ = ()

now:

>>> b = Base()
>>> b.a = "a"
Traceback (most recent call last):
  File "<pyshell#38>", line 1, in <module>
    b.a = "a"
AttributeError: "Base" object has no attribute "a"

Or subclass another class that defines __slots__

class Child(Base):
    __slots__ = ("a",)

and now:

c = Child()
c.a = "a"

but:

>>> c.b = "b"
Traceback (most recent call last):
  File "<pyshell#42>", line 1, in <module>
    c.b = "b"
AttributeError: "Child" object has no attribute "b"

To allow __dict__ creation while subclassing slotted objects, just add "__dict__" to the __slots__ (note that slots are ordered, and you shouldn"t repeat slots that are already in parent classes):

class SlottedWithDict(Child): 
    __slots__ = ("__dict__", "b")

swd = SlottedWithDict()
swd.a = "a"
swd.b = "b"
swd.c = "c"

and

>>> swd.__dict__
{"c": "c"}

Or you don"t even need to declare __slots__ in your subclass, and you will still use slots from the parents, but not restrict the creation of a __dict__:

class NoSlots(Child): pass
ns = NoSlots()
ns.a = "a"
ns.b = "b"

And:

>>> ns.__dict__
{"b": "b"}

However, __slots__ may cause problems for multiple inheritance:

class BaseA(object): 
    __slots__ = ("a",)

class BaseB(object): 
    __slots__ = ("b",)

Because creating a child class from parents with both non-empty slots fails:

>>> class Child(BaseA, BaseB): __slots__ = ()
Traceback (most recent call last):
  File "<pyshell#68>", line 1, in <module>
    class Child(BaseA, BaseB): __slots__ = ()
TypeError: Error when calling the metaclass bases
    multiple bases have instance lay-out conflict

If you run into this problem, You could just remove __slots__ from the parents, or if you have control of the parents, give them empty slots, or refactor to abstractions:

from abc import ABC

class AbstractA(ABC):
    __slots__ = ()

class BaseA(AbstractA): 
    __slots__ = ("a",)

class AbstractB(ABC):
    __slots__ = ()

class BaseB(AbstractB): 
    __slots__ = ("b",)

class Child(AbstractA, AbstractB): 
    __slots__ = ("a", "b")

c = Child() # no problem!

Add "__dict__" to __slots__ to get dynamic assignment:

class Foo(object):
    __slots__ = "bar", "baz", "__dict__"

and now:

>>> foo = Foo()
>>> foo.boink = "boink"

So with "__dict__" in slots we lose some of the size benefits with the upside of having dynamic assignment and still having slots for the names we do expect.

When you inherit from an object that isn"t slotted, you get the same sort of semantics when you use __slots__ - names that are in __slots__ point to slotted values, while any other values are put in the instance"s __dict__.

Avoiding __slots__ because you want to be able to add attributes on the fly is actually not a good reason - just add "__dict__" to your __slots__ if this is required.

You can similarly add __weakref__ to __slots__ explicitly if you need that feature.

Set to empty tuple when subclassing a namedtuple:

The namedtuple builtin make immutable instances that are very lightweight (essentially, the size of tuples) but to get the benefits, you need to do it yourself if you subclass them:

from collections import namedtuple
class MyNT(namedtuple("MyNT", "bar baz")):
    """MyNT is an immutable and lightweight object"""
    __slots__ = ()

usage:

>>> nt = MyNT("bar", "baz")
>>> nt.bar
"bar"
>>> nt.baz
"baz"

And trying to assign an unexpected attribute raises an AttributeError because we have prevented the creation of __dict__:

>>> nt.quux = "quux"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: "MyNT" object has no attribute "quux"

You can allow __dict__ creation by leaving off __slots__ = (), but you can"t use non-empty __slots__ with subtypes of tuple.

Biggest Caveat: Multiple inheritance

Even when non-empty slots are the same for multiple parents, they cannot be used together:

class Foo(object): 
    __slots__ = "foo", "bar"
class Bar(object):
    __slots__ = "foo", "bar" # alas, would work if empty, i.e. ()

>>> class Baz(Foo, Bar): pass
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Error when calling the metaclass bases
    multiple bases have instance lay-out conflict

Using an empty __slots__ in the parent seems to provide the most flexibility, allowing the child to choose to prevent or allow (by adding "__dict__" to get dynamic assignment, see section above) the creation of a __dict__:

class Foo(object): __slots__ = ()
class Bar(object): __slots__ = ()
class Baz(Foo, Bar): __slots__ = ("foo", "bar")
b = Baz()
b.foo, b.bar = "foo", "bar"

You don"t have to have slots - so if you add them, and remove them later, it shouldn"t cause any problems.

Going out on a limb here: If you"re composing mixins or using abstract base classes, which aren"t intended to be instantiated, an empty __slots__ in those parents seems to be the best way to go in terms of flexibility for subclassers.

To demonstrate, first, let"s create a class with code we"d like to use under multiple inheritance

class AbstractBase:
    __slots__ = ()
    def __init__(self, a, b):
        self.a = a
        self.b = b
    def __repr__(self):
        return f"{type(self).__name__}({repr(self.a)}, {repr(self.b)})"

We could use the above directly by inheriting and declaring the expected slots:

class Foo(AbstractBase):
    __slots__ = "a", "b"

But we don"t care about that, that"s trivial single inheritance, we need another class we might also inherit from, maybe with a noisy attribute:

class AbstractBaseC:
    __slots__ = ()
    @property
    def c(self):
        print("getting c!")
        return self._c
    @c.setter
    def c(self, arg):
        print("setting c!")
        self._c = arg

Now if both bases had nonempty slots, we couldn"t do the below. (In fact, if we wanted, we could have given AbstractBase nonempty slots a and b, and left them out of the below declaration - leaving them in would be wrong):

class Concretion(AbstractBase, AbstractBaseC):
    __slots__ = "a b _c".split()

And now we have functionality from both via multiple inheritance, and can still deny __dict__ and __weakref__ instantiation:

>>> c = Concretion("a", "b")
>>> c.c = c
setting c!
>>> c.c
getting c!
Concretion("a", "b")
>>> c.d = "d"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: "Concretion" object has no attribute "d"

Other cases to avoid slots:

  • Avoid them when you want to perform __class__ assignment with another class that doesn"t have them (and you can"t add them) unless the slot layouts are identical. (I am very interested in learning who is doing this and why.)
  • Avoid them if you want to subclass variable length builtins like long, tuple, or str, and you want to add attributes to them.
  • Avoid them if you insist on providing default values via class attributes for instance variables.

You may be able to tease out further caveats from the rest of the __slots__ documentation (the 3.7 dev docs are the most current), which I have made significant recent contributions to.

Critiques of other answers

The current top answers cite outdated information and are quite hand-wavy and miss the mark in some important ways.

Do not "only use __slots__ when instantiating lots of objects"

I quote:

"You would want to use __slots__ if you are going to instantiate a lot (hundreds, thousands) of objects of the same class."

Abstract Base Classes, for example, from the collections module, are not instantiated, yet __slots__ are declared for them.

Why?

If a user wishes to deny __dict__ or __weakref__ creation, those things must not be available in the parent classes.

__slots__ contributes to reusability when creating interfaces or mixins.

It is true that many Python users aren"t writing for reusability, but when you are, having the option to deny unnecessary space usage is valuable.

__slots__ doesn"t break pickling

When pickling a slotted object, you may find it complains with a misleading TypeError:

>>> pickle.loads(pickle.dumps(f))
TypeError: a class that defines __slots__ without defining __getstate__ cannot be pickled

This is actually incorrect. This message comes from the oldest protocol, which is the default. You can select the latest protocol with the -1 argument. In Python 2.7 this would be 2 (which was introduced in 2.3), and in 3.6 it is 4.

>>> pickle.loads(pickle.dumps(f, -1))
<__main__.Foo object at 0x1129C770>

in Python 2.7:

>>> pickle.loads(pickle.dumps(f, 2))
<__main__.Foo object at 0x1129C770>

in Python 3.6

>>> pickle.loads(pickle.dumps(f, 4))
<__main__.Foo object at 0x1129C770>

So I would keep this in mind, as it is a solved problem.

Critique of the (until Oct 2, 2016) accepted answer

The first paragraph is half short explanation, half predictive. Here"s the only part that actually answers the question

The proper use of __slots__ is to save space in objects. Instead of having a dynamic dict that allows adding attributes to objects at anytime, there is a static structure which does not allow additions after creation. This saves the overhead of one dict for every object that uses slots

The second half is wishful thinking, and off the mark:

While this is sometimes a useful optimization, it would be completely unnecessary if the Python interpreter was dynamic enough so that it would only require the dict when there actually were additions to the object.

Python actually does something similar to this, only creating the __dict__ when it is accessed, but creating lots of objects with no data is fairly ridiculous.

The second paragraph oversimplifies and misses actual reasons to avoid __slots__. The below is not a real reason to avoid slots (for actual reasons, see the rest of my answer above.):

They change the behavior of the objects that have slots in a way that can be abused by control freaks and static typing weenies.

It then goes on to discuss other ways of accomplishing that perverse goal with Python, not discussing anything to do with __slots__.

The third paragraph is more wishful thinking. Together it is mostly off-the-mark content that the answerer didn"t even author and contributes to ammunition for critics of the site.

Memory usage evidence

Create some normal objects and slotted objects:

>>> class Foo(object): pass
>>> class Bar(object): __slots__ = ()

Instantiate a million of them:

>>> foos = [Foo() for f in xrange(1000000)]
>>> bars = [Bar() for b in xrange(1000000)]

Inspect with guppy.hpy().heap():

>>> guppy.hpy().heap()
Partition of a set of 2028259 objects. Total size = 99763360 bytes.
 Index  Count   %     Size   % Cumulative  % Kind (class / dict of class)
     0 1000000  49 64000000  64  64000000  64 __main__.Foo
     1     169   0 16281480  16  80281480  80 list
     2 1000000  49 16000000  16  96281480  97 __main__.Bar
     3   12284   1   987472   1  97268952  97 str
...

Access the regular objects and their __dict__ and inspect again:

>>> for f in foos:
...     f.__dict__
>>> guppy.hpy().heap()
Partition of a set of 3028258 objects. Total size = 379763480 bytes.
 Index  Count   %      Size    % Cumulative  % Kind (class / dict of class)
     0 1000000  33 280000000  74 280000000  74 dict of __main__.Foo
     1 1000000  33  64000000  17 344000000  91 __main__.Foo
     2     169   0  16281480   4 360281480  95 list
     3 1000000  33  16000000   4 376281480  99 __main__.Bar
     4   12284   0    987472   0 377268952  99 str
...

This is consistent with the history of Python, from Unifying types and classes in Python 2.2

If you subclass a built-in type, extra space is automatically added to the instances to accomodate __dict__ and __weakrefs__. (The __dict__ is not initialized until you use it though, so you shouldn"t worry about the space occupied by an empty dictionary for each instance you create.) If you don"t need this extra space, you can add the phrase "__slots__ = []" to your class.

Answer #5

os.listdir() - list in the current directory

With listdir in os module you get the files and the folders in the current dir

 import os
 arr = os.listdir()
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

Looking in a directory

arr = os.listdir("c:\files")

glob from glob

with glob you can specify a type of file to list like this

import glob

txtfiles = []
for file in glob.glob("*.txt"):
    txtfiles.append(file)

glob in a list comprehension

mylist = [f for f in glob.glob("*.txt")]

get the full path of only files in the current directory

import os
from os import listdir
from os.path import isfile, join

cwd = os.getcwd()
onlyfiles = [os.path.join(cwd, f) for f in os.listdir(cwd) if 
os.path.isfile(os.path.join(cwd, f))]
print(onlyfiles) 

["G:\getfilesname\getfilesname.py", "G:\getfilesname\example.txt"]

Getting the full path name with os.path.abspath

You get the full path in return

 import os
 files_path = [os.path.abspath(x) for x in os.listdir()]
 print(files_path)
 
 ["F:\documentiapplications.txt", "F:\documenticollections.txt"]

Walk: going through sub directories

os.walk returns the root, the directories list and the files list, that is why I unpacked them in r, d, f in the for loop; it, then, looks for other files and directories in the subfolders of the root and so on until there are no subfolders.

import os

# Getting the current work directory (cwd)
thisdir = os.getcwd()

# r=root, d=directories, f = files
for r, d, f in os.walk(thisdir):
    for file in f:
        if file.endswith(".docx"):
            print(os.path.join(r, file))

os.listdir(): get files in the current directory (Python 2)

In Python 2, if you want the list of the files in the current directory, you have to give the argument as "." or os.getcwd() in the os.listdir method.

 import os
 arr = os.listdir(".")
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

To go up in the directory tree

# Method 1
x = os.listdir("..")

# Method 2
x= os.listdir("/")

Get files: os.listdir() in a particular directory (Python 2 and 3)

 import os
 arr = os.listdir("F:\python")
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

Get files of a particular subdirectory with os.listdir()

import os

x = os.listdir("./content")

os.walk(".") - current directory

 import os
 arr = next(os.walk("."))[2]
 print(arr)
 
 >>> ["5bs_Turismo1.pdf", "5bs_Turismo1.pptx", "esperienza.txt"]

next(os.walk(".")) and os.path.join("dir", "file")

 import os
 arr = []
 for d,r,f in next(os.walk("F:\_python")):
     for file in f:
         arr.append(os.path.join(r,file))

 for f in arr:
     print(files)

>>> F:\_python\dict_class.py
>>> F:\_python\programmi.txt

next(os.walk("F:\") - get the full path - list comprehension

 [os.path.join(r,file) for r,d,f in next(os.walk("F:\_python")) for file in f]
 
 >>> ["F:\_python\dict_class.py", "F:\_python\programmi.txt"]

os.walk - get full path - all files in sub dirs**

x = [os.path.join(r,file) for r,d,f in os.walk("F:\_python") for file in f]
print(x)

>>> ["F:\_python\dict.py", "F:\_python\progr.txt", "F:\_python\readl.py"]

os.listdir() - get only txt files

 arr_txt = [x for x in os.listdir() if x.endswith(".txt")]
 print(arr_txt)
 
 >>> ["work.txt", "3ebooks.txt"]

Using glob to get the full path of the files

If I should need the absolute path of the files:

from path import path
from glob import glob
x = [path(f).abspath() for f in glob("F:\*.txt")]
for f in x:
    print(f)

>>> F:acquistionline.txt
>>> F:acquisti_2018.txt
>>> F:ootstrap_jquery_ecc.txt

Using os.path.isfile to avoid directories in the list

import os.path
listOfFiles = [f for f in os.listdir() if os.path.isfile(f)]
print(listOfFiles)

>>> ["a simple game.py", "data.txt", "decorator.py"]

Using pathlib from Python 3.4

import pathlib

flist = []
for p in pathlib.Path(".").iterdir():
    if p.is_file():
        print(p)
        flist.append(p)

 >>> error.PNG
 >>> exemaker.bat
 >>> guiprova.mp3
 >>> setup.py
 >>> speak_gui2.py
 >>> thumb.PNG

With list comprehension:

flist = [p for p in pathlib.Path(".").iterdir() if p.is_file()]

Alternatively, use pathlib.Path() instead of pathlib.Path(".")

Use glob method in pathlib.Path()

import pathlib

py = pathlib.Path().glob("*.py")
for file in py:
    print(file)

>>> stack_overflow_list.py
>>> stack_overflow_list_tkinter.py

Get all and only files with os.walk

import os
x = [i[2] for i in os.walk(".")]
y=[]
for t in x:
    for f in t:
        y.append(f)
print(y)

>>> ["append_to_list.py", "data.txt", "data1.txt", "data2.txt", "data_180617", "os_walk.py", "READ2.py", "read_data.py", "somma_defaltdic.py", "substitute_words.py", "sum_data.py", "data.txt", "data1.txt", "data_180617"]

Get only files with next and walk in a directory

 import os
 x = next(os.walk("F://python"))[2]
 print(x)
 
 >>> ["calculator.bat","calculator.py"]

Get only directories with next and walk in a directory

 import os
 next(os.walk("F://python"))[1] # for the current dir use (".")
 
 >>> ["python3","others"]

Get all the subdir names with walk

for r,d,f in os.walk("F:\_python"):
    for dirs in d:
        print(dirs)

>>> .vscode
>>> pyexcel
>>> pyschool.py
>>> subtitles
>>> _metaprogramming
>>> .ipynb_checkpoints

os.scandir() from Python 3.5 and greater

import os
x = [f.name for f in os.scandir() if f.is_file()]
print(x)

>>> ["calculator.bat","calculator.py"]

# Another example with scandir (a little variation from docs.python.org)
# This one is more efficient than os.listdir.
# In this case, it shows the files only in the current directory
# where the script is executed.

import os
with os.scandir() as i:
    for entry in i:
        if entry.is_file():
            print(entry.name)

>>> ebookmaker.py
>>> error.PNG
>>> exemaker.bat
>>> guiprova.mp3
>>> setup.py
>>> speakgui4.py
>>> speak_gui2.py
>>> speak_gui3.py
>>> thumb.PNG

Examples:

Ex. 1: How many files are there in the subdirectories?

In this example, we look for the number of files that are included in all the directory and its subdirectories.

import os

def count(dir, counter=0):
    "returns number of files in dir and subdirs"
    for pack in os.walk(dir):
        for f in pack[2]:
            counter += 1
    return dir + " : " + str(counter) + "files"

print(count("F:\python"))

>>> "F:\python" : 12057 files"

Ex.2: How to copy all files from a directory to another?

A script to make order in your computer finding all files of a type (default: pptx) and copying them in a new folder.

import os
import shutil
from path import path

destination = "F:\file_copied"
# os.makedirs(destination)

def copyfile(dir, filetype="pptx", counter=0):
    "Searches for pptx (or other - pptx is the default) files and copies them"
    for pack in os.walk(dir):
        for f in pack[2]:
            if f.endswith(filetype):
                fullpath = pack[0] + "\" + f
                print(fullpath)
                shutil.copy(fullpath, destination)
                counter += 1
    if counter > 0:
        print("-" * 30)
        print("	==> Found in: `" + dir + "` : " + str(counter) + " files
")

for dir in os.listdir():
    "searches for folders that starts with `_`"
    if dir[0] == "_":
        # copyfile(dir, filetype="pdf")
        copyfile(dir, filetype="txt")


>>> _compiti18Compito Contabilità 1conti.txt
>>> _compiti18Compito Contabilità 1modula4.txt
>>> _compiti18Compito Contabilità 1moduloa4.txt
>>> ------------------------
>>> ==> Found in: `_compiti18` : 3 files

Ex. 3: How to get all the files in a txt file

In case you want to create a txt file with all the file names:

import os
mylist = ""
with open("filelist.txt", "w", encoding="utf-8") as file:
    for eachfile in os.listdir():
        mylist += eachfile + "
"
    file.write(mylist)

Example: txt with all the files of an hard drive

"""
We are going to save a txt file with all the files in your directory.
We will use the function walk()
"""

import os

# see all the methods of os
# print(*dir(os), sep=", ")
listafile = []
percorso = []
with open("lista_file.txt", "w", encoding="utf-8") as testo:
    for root, dirs, files in os.walk("D:\"):
        for file in files:
            listafile.append(file)
            percorso.append(root + "\" + file)
            testo.write(file + "
")
listafile.sort()
print("N. of files", len(listafile))
with open("lista_file_ordinata.txt", "w", encoding="utf-8") as testo_ordinato:
    for file in listafile:
        testo_ordinato.write(file + "
")

with open("percorso.txt", "w", encoding="utf-8") as file_percorso:
    for file in percorso:
        file_percorso.write(file + "
")

os.system("lista_file.txt")
os.system("lista_file_ordinata.txt")
os.system("percorso.txt")

All the file of C: in one text file

This is a shorter version of the previous code. Change the folder where to start finding the files if you need to start from another position. This code generate a 50 mb on text file on my computer with something less then 500.000 lines with files with the complete path.

import os

with open("file.txt", "w", encoding="utf-8") as filewrite:
    for r, d, f in os.walk("C:\"):
        for file in f:
            filewrite.write(f"{r + file}
")

How to write a file with all paths in a folder of a type

With this function you can create a txt file that will have the name of a type of file that you look for (ex. pngfile.txt) with all the full path of all the files of that type. It can be useful sometimes, I think.

import os

def searchfiles(extension=".ttf", folder="H:\"):
    "Create a txt file with all the file of a type"
    with open(extension[1:] + "file.txt", "w", encoding="utf-8") as filewrite:
        for r, d, f in os.walk(folder):
            for file in f:
                if file.endswith(extension):
                    filewrite.write(f"{r + file}
")

# looking for png file (fonts) in the hard disk H:
searchfiles(".png", "H:\")

>>> H:4bs_18Dolphins5.png
>>> H:4bs_18Dolphins6.png
>>> H:4bs_18Dolphins7.png
>>> H:5_18marketing htmlassetsimageslogo2.png
>>> H:7z001.png
>>> H:7z002.png

(New) Find all files and open them with tkinter GUI

I just wanted to add in this 2019 a little app to search for all files in a dir and be able to open them by doubleclicking on the name of the file in the list. enter image description here

import tkinter as tk
import os

def searchfiles(extension=".txt", folder="H:\"):
    "insert all files in the listbox"
    for r, d, f in os.walk(folder):
        for file in f:
            if file.endswith(extension):
                lb.insert(0, r + "\" + file)

def open_file():
    os.startfile(lb.get(lb.curselection()[0]))

root = tk.Tk()
root.geometry("400x400")
bt = tk.Button(root, text="Search", command=lambda:searchfiles(".png", "H:\"))
bt.pack()
lb = tk.Listbox(root)
lb.pack(fill="both", expand=1)
lb.bind("<Double-Button>", lambda x: open_file())
root.mainloop()

Answer #6

This is the behaviour to adopt when the referenced object is deleted. It is not specific to Django; this is an SQL standard. Although Django has its own implementation on top of SQL. (1)

There are seven possible actions to take when such event occurs:

  • CASCADE: When the referenced object is deleted, also delete the objects that have references to it (when you remove a blog post for instance, you might want to delete comments as well). SQL equivalent: CASCADE.
  • PROTECT: Forbid the deletion of the referenced object. To delete it you will have to delete all objects that reference it manually. SQL equivalent: RESTRICT.
  • RESTRICT: (introduced in Django 3.1) Similar behavior as PROTECT that matches SQL"s RESTRICT more accurately. (See django documentation example)
  • SET_NULL: Set the reference to NULL (requires the field to be nullable). For instance, when you delete a User, you might want to keep the comments he posted on blog posts, but say it was posted by an anonymous (or deleted) user. SQL equivalent: SET NULL.
  • SET_DEFAULT: Set the default value. SQL equivalent: SET DEFAULT.
  • SET(...): Set a given value. This one is not part of the SQL standard and is entirely handled by Django.
  • DO_NOTHING: Probably a very bad idea since this would create integrity issues in your database (referencing an object that actually doesn"t exist). SQL equivalent: NO ACTION. (2)

Source: Django documentation

See also the documentation of PostgreSQL for instance.

In most cases, CASCADE is the expected behaviour, but for every ForeignKey, you should always ask yourself what is the expected behaviour in this situation. PROTECT and SET_NULL are often useful. Setting CASCADE where it should not, can potentially delete all of your database in cascade, by simply deleting a single user.


Additional note to clarify cascade direction

It"s funny to notice that the direction of the CASCADE action is not clear to many people. Actually, it"s funny to notice that only the CASCADE action is not clear. I understand the cascade behavior might be confusing, however you must think that it is the same direction as any other action. Thus, if you feel that CASCADE direction is not clear to you, it actually means that on_delete behavior is not clear to you.

In your database, a foreign key is basically represented by an integer field which value is the primary key of the foreign object. Let"s say you have an entry comment_A, which has a foreign key to an entry article_B. If you delete the entry comment_A, everything is fine. article_B used to live without comment_A and don"t bother if it"s deleted. However, if you delete article_B, then comment_A panics! It never lived without article_B and needs it, and it"s part of its attributes (article=article_B, but what is article_B???). This is where on_delete steps in, to determine how to resolve this integrity error, either by saying:

  • "No! Please! Don"t! I can"t live without you!" (which is said PROTECT or RESTRICT in Django/SQL)
  • "All right, if I"m not yours, then I"m nobody"s" (which is said SET_NULL)
  • "Good bye world, I can"t live without article_B" and commit suicide (this is the CASCADE behavior).
  • "It"s OK, I"ve got spare lover, and I"ll reference article_C from now" (SET_DEFAULT, or even SET(...)).
  • "I can"t face reality, and I"ll keep calling your name even if that"s the only thing left to me!" (DO_NOTHING)

I hope it makes cascade direction clearer. :)


Footnotes

(1) Django has its own implementation on top of SQL. And, as mentioned by @JoeMjr2 in the comments below, Django will not create the SQL constraints. If you want the constraints to be ensured by your database (for instance, if your database is used by another application, or if you hang in the database console from time to time), you might want to set the related constraints manually yourself. There is an open ticket to add support for database-level on delete constrains in Django.

(2) Actually, there is one case where DO_NOTHING can be useful: If you want to skip Django"s implementation and implement the constraint yourself at the database-level.

Answer #7

TL;DR: If you are using Python 3.10 or later, it just works. As of today (2019), in 3.7+ you must turn this feature on using a future statement (from __future__ import annotations). In Python 3.6 or below, use a string.

I guess you got this exception:

NameError: name "Position" is not defined

This is because Position must be defined before you can use it in an annotation unless you are using Python 3.10 or later.

Python 3.7+: from __future__ import annotations

Python 3.7 introduces PEP 563: postponed evaluation of annotations. A module that uses the future statement from __future__ import annotations will store annotations as strings automatically:

from __future__ import annotations

class Position:
    def __add__(self, other: Position) -> Position:
        ...

This is scheduled to become the default in Python 3.10. Since Python still is a dynamically typed language so no type checking is done at runtime, typing annotations should have no performance impact, right? Wrong! Before python 3.7 the typing module used to be one of the slowest python modules in core so if you import typing you will see up to 7 times increase in performance when you upgrade to 3.7.

Python <3.7: use a string

According to PEP 484, you should use a string instead of the class itself:

class Position:
    ...
    def __add__(self, other: "Position") -> "Position":
       ...

If you use the Django framework this may be familiar as Django models also use strings for forward references (foreign key definitions where the foreign model is self or is not declared yet). This should work with Pycharm and other tools.

Sources

The relevant parts of PEP 484 and PEP 563, to spare you the trip:

Forward references

When a type hint contains names that have not been defined yet, that definition may be expressed as a string literal, to be resolved later.

A situation where this occurs commonly is the definition of a container class, where the class being defined occurs in the signature of some of the methods. For example, the following code (the start of a simple binary tree implementation) does not work:

class Tree:
    def __init__(self, left: Tree, right: Tree):
        self.left = left
        self.right = right

To address this, we write:

class Tree:
    def __init__(self, left: "Tree", right: "Tree"):
        self.left = left
        self.right = right

The string literal should contain a valid Python expression (i.e., compile(lit, "", "eval") should be a valid code object) and it should evaluate without errors once the module has been fully loaded. The local and global namespace in which it is evaluated should be the same namespaces in which default arguments to the same function would be evaluated.

and PEP 563:

Implementation

In Python 3.10, function and variable annotations will no longer be evaluated at definition time. Instead, a string form will be preserved in the respective __annotations__ dictionary. Static type checkers will see no difference in behavior, whereas tools using annotations at runtime will have to perform postponed evaluation.

...

Enabling the future behavior in Python 3.7

The functionality described above can be enabled starting from Python 3.7 using the following special import:

from __future__ import annotations

Things that you may be tempted to do instead

A. Define a dummy Position

Before the class definition, place a dummy definition:

class Position(object):
    pass


class Position(object):
    ...

This will get rid of the NameError and may even look OK:

>>> Position.__add__.__annotations__
{"other": __main__.Position, "return": __main__.Position}

But is it?

>>> for k, v in Position.__add__.__annotations__.items():
...     print(k, "is Position:", v is Position)                                                                                                                                                                                                                  
return is Position: False
other is Position: False

B. Monkey-patch in order to add the annotations:

You may want to try some Python meta programming magic and write a decorator to monkey-patch the class definition in order to add annotations:

class Position:
    ...
    def __add__(self, other):
        return self.__class__(self.x + other.x, self.y + other.y)

The decorator should be responsible for the equivalent of this:

Position.__add__.__annotations__["return"] = Position
Position.__add__.__annotations__["other"] = Position

At least it seems right:

>>> for k, v in Position.__add__.__annotations__.items():
...     print(k, "is Position:", v is Position)                                                                                                                                                                                                                  
return is Position: True
other is Position: True

Probably too much trouble.

Answer #8

Placing the legend (bbox_to_anchor)

A legend is positioned inside the bounding box of the axes using the loc argument to plt.legend.
E.g. loc="upper right" places the legend in the upper right corner of the bounding box, which by default extents from (0,0) to (1,1) in axes coordinates (or in bounding box notation (x0,y0, width, height)=(0,0,1,1)).

To place the legend outside of the axes bounding box, one may specify a tuple (x0,y0) of axes coordinates of the lower left corner of the legend.

plt.legend(loc=(1.04,0))

A more versatile approach is to manually specify the bounding box into which the legend should be placed, using the bbox_to_anchor argument. One can restrict oneself to supply only the (x0, y0) part of the bbox. This creates a zero span box, out of which the legend will expand in the direction given by the loc argument. E.g.

plt.legend(bbox_to_anchor=(1.04,1), loc="upper left")

places the legend outside the axes, such that the upper left corner of the legend is at position (1.04,1) in axes coordinates.

Further examples are given below, where additionally the interplay between different arguments like mode and ncols are shown.

enter image description here

l1 = plt.legend(bbox_to_anchor=(1.04,1), borderaxespad=0)
l2 = plt.legend(bbox_to_anchor=(1.04,0), loc="lower left", borderaxespad=0)
l3 = plt.legend(bbox_to_anchor=(1.04,0.5), loc="center left", borderaxespad=0)
l4 = plt.legend(bbox_to_anchor=(0,1.02,1,0.2), loc="lower left",
                mode="expand", borderaxespad=0, ncol=3)
l5 = plt.legend(bbox_to_anchor=(1,0), loc="lower right", 
                bbox_transform=fig.transFigure, ncol=3)
l6 = plt.legend(bbox_to_anchor=(0.4,0.8), loc="upper right")

Details about how to interpret the 4-tuple argument to bbox_to_anchor, as in l4, can be found in this question. The mode="expand" expands the legend horizontally inside the bounding box given by the 4-tuple. For a vertically expanded legend, see this question.

Sometimes it may be useful to specify the bounding box in figure coordinates instead of axes coordinates. This is shown in the example l5 from above, where the bbox_transform argument is used to put the legend in the lower left corner of the figure.

Postprocessing

Having placed the legend outside the axes often leads to the undesired situation that it is completely or partially outside the figure canvas.

Solutions to this problem are:

  • Adjust the subplot parameters
    One can adjust the subplot parameters such, that the axes take less space inside the figure (and thereby leave more space to the legend) by using plt.subplots_adjust. E.g.

      plt.subplots_adjust(right=0.7)
    

leaves 30% space on the right-hand side of the figure, where one could place the legend.

  • Tight layout
    Using plt.tight_layout Allows to automatically adjust the subplot parameters such that the elements in the figure sit tight against the figure edges. Unfortunately, the legend is not taken into account in this automatism, but we can supply a rectangle box that the whole subplots area (including labels) will fit into.

      plt.tight_layout(rect=[0,0,0.75,1])
    
  • Saving the figure with bbox_inches = "tight"
    The argument bbox_inches = "tight" to plt.savefig can be used to save the figure such that all artist on the canvas (including the legend) are fit into the saved area. If needed, the figure size is automatically adjusted.

      plt.savefig("output.png", bbox_inches="tight")
    
  • automatically adjusting the subplot params
    A way to automatically adjust the subplot position such that the legend fits inside the canvas without changing the figure size can be found in this answer: Creating figure with exact size and no padding (and legend outside the axes)

Comparison between the cases discussed above:

enter image description here

Alternatives

A figure legend

One may use a legend to the figure instead of the axes, matplotlib.figure.Figure.legend. This has become especially useful for matplotlib version >=2.1, where no special arguments are needed

fig.legend(loc=7) 

to create a legend for all artists in the different axes of the figure. The legend is placed using the loc argument, similar to how it is placed inside an axes, but in reference to the whole figure - hence it will be outside the axes somewhat automatically. What remains is to adjust the subplots such that there is no overlap between the legend and the axes. Here the point "Adjust the subplot parameters" from above will be helpful. An example:

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0,2*np.pi)
colors=["#7aa0c4","#ca82e1" ,"#8bcd50","#e18882"]
fig, axes = plt.subplots(ncols=2)
for i in range(4):
    axes[i//2].plot(x,np.sin(x+i), color=colors[i],label="y=sin(x+{})".format(i))

fig.legend(loc=7)
fig.tight_layout()
fig.subplots_adjust(right=0.75)   
plt.show()

enter image description here

Legend inside dedicated subplot axes

An alternative to using bbox_to_anchor would be to place the legend in its dedicated subplot axes (lax). Since the legend subplot should be smaller than the plot, we may use gridspec_kw={"width_ratios":[4,1]} at axes creation. We can hide the axes lax.axis("off") but still put a legend in. The legend handles and labels need to obtained from the real plot via h,l = ax.get_legend_handles_labels(), and can then be supplied to the legend in the lax subplot, lax.legend(h,l). A complete example is below.

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = 6,2

fig, (ax,lax) = plt.subplots(ncols=2, gridspec_kw={"width_ratios":[4,1]})
ax.plot(x,y, label="y=sin(x)")
....

h,l = ax.get_legend_handles_labels()
lax.legend(h,l, borderaxespad=0)
lax.axis("off")

plt.tight_layout()
plt.show()

This produces a plot, which is visually pretty similar to the plot from above:

enter image description here

We could also use the first axes to place the legend, but use the bbox_transform of the legend axes,

ax.legend(bbox_to_anchor=(0,0,1,1), bbox_transform=lax.transAxes)
lax.axis("off")

In this approach, we do not need to obtain the legend handles externally, but we need to specify the bbox_to_anchor argument.

Further reading and notes:

  • Consider the matplotlib legend guide with some examples of other stuff you want to do with legends.
  • Some example code for placing legends for pie charts may directly be found in answer to this question: Python - Legend overlaps with the pie chart
  • The loc argument can take numbers instead of strings, which make calls shorter, however, they are not very intuitively mapped to each other. Here is the mapping for reference:

enter image description here

Answer #9

You can disable any Python warnings via the PYTHONWARNINGS environment variable. In this case, you want:

export PYTHONWARNINGS="ignore:Unverified HTTPS request"

To disable using Python code (requests >= 2.16.0):

import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

For requests < 2.16.0, see original answer below.

Original answer

The reason doing urllib3.disable_warnings() didn"t work for you is because it looks like you"re using a separate instance of urllib3 vendored inside of requests.

I gather this based on the path here: /usr/lib/python2.6/site-packages/requests/packages/urllib3/connectionpool.py

To disable warnings in requests" vendored urllib3, you"ll need to import that specific instance of the module:

import requests
from requests.packages.urllib3.exceptions import InsecureRequestWarning

requests.packages.urllib3.disable_warnings(InsecureRequestWarning)

Answer #10

Is there any reason for a class declaration to inherit from object?

In Python 3, apart from compatibility between Python 2 and 3, no reason. In Python 2, many reasons.


Python 2.x story:

In Python 2.x (from 2.2 onwards) there"s two styles of classes depending on the presence or absence of object as a base-class:

  1. "classic" style classes: they don"t have object as a base class:

    >>> class ClassicSpam:      # no base class
    ...     pass
    >>> ClassicSpam.__bases__
    ()
    
  2. "new" style classes: they have, directly or indirectly (e.g inherit from a built-in type), object as a base class:

    >>> class NewSpam(object):           # directly inherit from object
    ...    pass
    >>> NewSpam.__bases__
    (<type "object">,)
    >>> class IntSpam(int):              # indirectly inherit from object...
    ...    pass
    >>> IntSpam.__bases__
    (<type "int">,) 
    >>> IntSpam.__bases__[0].__bases__   # ... because int inherits from object  
    (<type "object">,)
    

Without a doubt, when writing a class you"ll always want to go for new-style classes. The perks of doing so are numerous, to list some of them:

  • Support for descriptors. Specifically, the following constructs are made possible with descriptors:

    1. classmethod: A method that receives the class as an implicit argument instead of the instance.
    2. staticmethod: A method that does not receive the implicit argument self as a first argument.
    3. properties with property: Create functions for managing the getting, setting and deleting of an attribute.
    4. __slots__: Saves memory consumptions of a class and also results in faster attribute access. Of course, it does impose limitations.
  • The __new__ static method: lets you customize how new class instances are created.

  • Method resolution order (MRO): in what order the base classes of a class will be searched when trying to resolve which method to call.

  • Related to MRO, super calls. Also see, super() considered super.

If you don"t inherit from object, forget these. A more exhaustive description of the previous bullet points along with other perks of "new" style classes can be found here.

One of the downsides of new-style classes is that the class itself is more memory demanding. Unless you"re creating many class objects, though, I doubt this would be an issue and it"s a negative sinking in a sea of positives.


Python 3.x story:

In Python 3, things are simplified. Only new-style classes exist (referred to plainly as classes) so, the only difference in adding object is requiring you to type in 8 more characters. This:

class ClassicSpam:
    pass

is completely equivalent (apart from their name :-) to this:

class NewSpam(object):
     pass

and to this:

class Spam():
    pass

All have object in their __bases__.

>>> [object in cls.__bases__ for cls in {Spam, NewSpam, ClassicSpam}]
[True, True, True]

So, what should you do?

In Python 2: always inherit from object explicitly. Get the perks.

In Python 3: inherit from object if you are writing code that tries to be Python agnostic, that is, it needs to work both in Python 2 and in Python 3. Otherwise don"t, it really makes no difference since Python inserts it for you behind the scenes.

Blurring and expanding images on OpenCV in Python: StackOverflow Questions

How can I open multiple files using "with open" in Python?

I want to change a couple of files at one time, iff I can write to all of them. I"m wondering if I somehow can combine the multiple open calls with the with statement:

try:
  with open("a", "w") as a and open("b", "w") as b:
    do_something()
except IOError as e:
  print "Operation failed: %s" % e.strerror

If that"s not possible, what would an elegant solution to this problem look like?

open() in Python does not create a file if it doesn"t exist

What is the best way to open a file as read/write if it exists, or if it does not, then create it and open it as read/write? From what I read, file = open("myfile.dat", "rw") should do this, right?

It is not working for me (Python 2.6.2) and I"m wondering if it is a version problem, or not supposed to work like that or what.

The bottom line is, I just need a solution for the problem. I am curious about the other stuff, but all I need is a nice way to do the opening part.

The enclosing directory was writeable by user and group, not other (I"m on a Linux system... so permissions 775 in other words), and the exact error was:

IOError: no such file or directory.

Difference between modes a, a+, w, w+, and r+ in built-in open function?

In the python built-in open function, what is the exact difference between the modes w, a, w+, a+, and r+?

In particular, the documentation implies that all of these will allow writing to the file, and says that it opens the files for "appending", "writing", and "updating" specifically, but does not define what these terms mean.

Simple Digit Recognition OCR in OpenCV-Python

I am trying to implement a "Digit Recognition OCR" in OpenCV-Python (cv2). It is just for learning purposes. I would like to learn both KNearest and SVM features in OpenCV.

I have 100 samples (i.e. images) of each digit. I would like to train with them.

There is a sample letter_recog.py that comes with OpenCV sample. But I still couldn"t figure out on how to use it. I don"t understand what are the samples, responses etc. Also, it loads a txt file at first, which I didn"t understand first.

Later on searching a little bit, I could find a letter_recognition.data in cpp samples. I used it and made a code for cv2.KNearest in the model of letter_recog.py (just for testing):

import numpy as np
import cv2

fn = "letter-recognition.data"
a = np.loadtxt(fn, np.float32, delimiter=",", converters={ 0 : lambda ch : ord(ch)-ord("A") })
samples, responses = a[:,1:], a[:,0]

model = cv2.KNearest()
retval = model.train(samples,responses)
retval, results, neigh_resp, dists = model.find_nearest(samples, k = 10)
print results.ravel()

It gave me an array of size 20000, I don"t understand what it is.

Questions:

1) What is letter_recognition.data file? How to build that file from my own data set?

2) What does results.reval() denote?

3) How we can write a simple digit recognition tool using letter_recognition.data file (either KNearest or SVM)?

Does reading an entire file leave the file handle open?

If you read an entire file with content = open("Path/to/file", "r").read() is the file handle left open until the script exits? Is there a more concise method to read a whole file?

Store output of subprocess.Popen call in a string

I"m trying to make a system call in Python and store the output to a string that I can manipulate in the Python program.

#!/usr/bin/python
import subprocess
p2 = subprocess.Popen("ntpq -p")

I"ve tried a few things including some of the suggestions here:

Retrieving the output of subprocess.call()

but without any luck.

"Unicode Error "unicodeescape" codec can"t decode bytes... Cannot open text files in Python 3

I am using Python 3.1 on a Windows 7 machine. Russian is the default system language, and utf-8 is the default encoding.

Looking at the answer to a previous question, I have attempting using the "codecs" module to give me a little luck. Here"s a few examples:

>>> g = codecs.open("C:UsersEricDesktopeeline.txt", "r", encoding="utf-8")
SyntaxError: (unicode error) "unicodeescape" codec can"t decode bytes in position 2-4: truncated UXXXXXXXX escape (<pyshell#39>, line 1)
>>> g = codecs.open("C:UsersEricDesktopSite.txt", "r", encoding="utf-8")
SyntaxError: (unicode error) "unicodeescape" codec can"t decode bytes in position 2-4: truncated UXXXXXXXX escape (<pyshell#40>, line 1)
>>> g = codecs.open("C:Python31Notes.txt", "r", encoding="utf-8")
SyntaxError: (unicode error) "unicodeescape" codec can"t decode bytes in position 11-12: malformed N character escape (<pyshell#41>, line 1)
>>> g = codecs.open("C:UsersEricDesktopSite.txt", "r", encoding="utf-8")
SyntaxError: (unicode error) "unicodeescape" codec can"t decode bytes in position 2-4: truncated UXXXXXXXX escape (<pyshell#44>, line 1)

My last idea was, I thought it might have been the fact that Windows "translates" a few folders, such as the "users" folder, into Russian (though typing "users" is still the correct path), so I tried it in the Python31 folder. Still, no luck. Any ideas?

Python subprocess/Popen with a modified environment

I believe that running an external command with a slightly modified environment is a very common case. That"s how I tend to do it:

import subprocess, os
my_env = os.environ
my_env["PATH"] = "/usr/sbin:/sbin:" + my_env["PATH"]
subprocess.Popen(my_command, env=my_env)

I"ve got a gut feeling that there"s a better way; does it look alright?

Cannot find module cv2 when using OpenCV

I have installed OpenCV on the Occidentalis operating system (a variant of Raspbian) on a Raspberry Pi, using jayrambhia"s script found here. It installed version 2.4.5.

When I try import cv2 in a Python program, I get the following message:

[email protected]~$ python cam.py
Traceback (most recent call last)
File "cam.py", line 1, in <module>
    import cv2
ImportError: No module named cv2

The file cv2.so is stored in /usr/local/lib/python2.7/site-packages/...

There are also folders in /usr/local/lib called python3.2 and python2.6, which could be a problem but I"m not sure.

Is this a path error perhaps? Any help is appreciated, I am new to Linux.

How to crop an image in OpenCV using Python

How can I crop images, like I"ve done before in PIL, using OpenCV.

Working example on PIL

im = Image.open("0.png").convert("L")
im = im.crop((1, 1, 98, 33))
im.save("_0.png")

But how I can do it on OpenCV?

This is what I tried:

im = cv.imread("0.png", cv.CV_LOAD_IMAGE_GRAYSCALE)
(thresh, im_bw) = cv.threshold(im, 128, 255, cv.THRESH_OTSU)
im = cv.getRectSubPix(im_bw, (98, 33), (1, 1))
cv.imshow("Img", im)
cv.waitKey(0)

But it doesn"t work.

I think I incorrectly used getRectSubPix. If this is the case, please explain how I can correctly use this function.

Answer #1

Since this question was asked in 2010, there has been real simplification in how to do simple multithreading with Python with map and pool.

The code below comes from an article/blog post that you should definitely check out (no affiliation) - Parallelism in one line: A Better Model for Day to Day Threading Tasks. I"ll summarize below - it ends up being just a few lines of code:

from multiprocessing.dummy import Pool as ThreadPool
pool = ThreadPool(4)
results = pool.map(my_function, my_array)

Which is the multithreaded version of:

results = []
for item in my_array:
    results.append(my_function(item))

Description

Map is a cool little function, and the key to easily injecting parallelism into your Python code. For those unfamiliar, map is something lifted from functional languages like Lisp. It is a function which maps another function over a sequence.

Map handles the iteration over the sequence for us, applies the function, and stores all of the results in a handy list at the end.

Enter image description here


Implementation

Parallel versions of the map function are provided by two libraries:multiprocessing, and also its little known, but equally fantastic step child:multiprocessing.dummy.

multiprocessing.dummy is exactly the same as multiprocessing module, but uses threads instead (an important distinction - use multiple processes for CPU-intensive tasks; threads for (and during) I/O):

multiprocessing.dummy replicates the API of multiprocessing, but is no more than a wrapper around the threading module.

import urllib2
from multiprocessing.dummy import Pool as ThreadPool

urls = [
  "http://www.python.org",
  "http://www.python.org/about/",
  "http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html",
  "http://www.python.org/doc/",
  "http://www.python.org/download/",
  "http://www.python.org/getit/",
  "http://www.python.org/community/",
  "https://wiki.python.org/moin/",
]

# Make the Pool of workers
pool = ThreadPool(4)

# Open the URLs in their own threads
# and return the results
results = pool.map(urllib2.urlopen, urls)

# Close the pool and wait for the work to finish
pool.close()
pool.join()

And the timing results:

Single thread:   14.4 seconds
       4 Pool:   3.1 seconds
       8 Pool:   1.4 seconds
      13 Pool:   1.3 seconds

Passing multiple arguments (works like this only in Python 3.3 and later):

To pass multiple arrays:

results = pool.starmap(function, zip(list_a, list_b))

Or to pass a constant and an array:

results = pool.starmap(function, zip(itertools.repeat(constant), list_a))

If you are using an earlier version of Python, you can pass multiple arguments via this workaround).

(Thanks to user136036 for the helpful comment.)

Answer #2

os.listdir() - list in the current directory

With listdir in os module you get the files and the folders in the current dir

 import os
 arr = os.listdir()
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

Looking in a directory

arr = os.listdir("c:\files")

glob from glob

with glob you can specify a type of file to list like this

import glob

txtfiles = []
for file in glob.glob("*.txt"):
    txtfiles.append(file)

glob in a list comprehension

mylist = [f for f in glob.glob("*.txt")]

get the full path of only files in the current directory

import os
from os import listdir
from os.path import isfile, join

cwd = os.getcwd()
onlyfiles = [os.path.join(cwd, f) for f in os.listdir(cwd) if 
os.path.isfile(os.path.join(cwd, f))]
print(onlyfiles) 

["G:\getfilesname\getfilesname.py", "G:\getfilesname\example.txt"]

Getting the full path name with os.path.abspath

You get the full path in return

 import os
 files_path = [os.path.abspath(x) for x in os.listdir()]
 print(files_path)
 
 ["F:\documentiapplications.txt", "F:\documenticollections.txt"]

Walk: going through sub directories

os.walk returns the root, the directories list and the files list, that is why I unpacked them in r, d, f in the for loop; it, then, looks for other files and directories in the subfolders of the root and so on until there are no subfolders.

import os

# Getting the current work directory (cwd)
thisdir = os.getcwd()

# r=root, d=directories, f = files
for r, d, f in os.walk(thisdir):
    for file in f:
        if file.endswith(".docx"):
            print(os.path.join(r, file))

os.listdir(): get files in the current directory (Python 2)

In Python 2, if you want the list of the files in the current directory, you have to give the argument as "." or os.getcwd() in the os.listdir method.

 import os
 arr = os.listdir(".")
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

To go up in the directory tree

# Method 1
x = os.listdir("..")

# Method 2
x= os.listdir("/")

Get files: os.listdir() in a particular directory (Python 2 and 3)

 import os
 arr = os.listdir("F:\python")
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

Get files of a particular subdirectory with os.listdir()

import os

x = os.listdir("./content")

os.walk(".") - current directory

 import os
 arr = next(os.walk("."))[2]
 print(arr)
 
 >>> ["5bs_Turismo1.pdf", "5bs_Turismo1.pptx", "esperienza.txt"]

next(os.walk(".")) and os.path.join("dir", "file")

 import os
 arr = []
 for d,r,f in next(os.walk("F:\_python")):
     for file in f:
         arr.append(os.path.join(r,file))

 for f in arr:
     print(files)

>>> F:\_python\dict_class.py
>>> F:\_python\programmi.txt

next(os.walk("F:\") - get the full path - list comprehension

 [os.path.join(r,file) for r,d,f in next(os.walk("F:\_python")) for file in f]
 
 >>> ["F:\_python\dict_class.py", "F:\_python\programmi.txt"]

os.walk - get full path - all files in sub dirs**

x = [os.path.join(r,file) for r,d,f in os.walk("F:\_python") for file in f]
print(x)

>>> ["F:\_python\dict.py", "F:\_python\progr.txt", "F:\_python\readl.py"]

os.listdir() - get only txt files

 arr_txt = [x for x in os.listdir() if x.endswith(".txt")]
 print(arr_txt)
 
 >>> ["work.txt", "3ebooks.txt"]

Using glob to get the full path of the files

If I should need the absolute path of the files:

from path import path
from glob import glob
x = [path(f).abspath() for f in glob("F:\*.txt")]
for f in x:
    print(f)

>>> F:acquistionline.txt
>>> F:acquisti_2018.txt
>>> F:ootstrap_jquery_ecc.txt

Using os.path.isfile to avoid directories in the list

import os.path
listOfFiles = [f for f in os.listdir() if os.path.isfile(f)]
print(listOfFiles)

>>> ["a simple game.py", "data.txt", "decorator.py"]

Using pathlib from Python 3.4

import pathlib

flist = []
for p in pathlib.Path(".").iterdir():
    if p.is_file():
        print(p)
        flist.append(p)

 >>> error.PNG
 >>> exemaker.bat
 >>> guiprova.mp3
 >>> setup.py
 >>> speak_gui2.py
 >>> thumb.PNG

With list comprehension:

flist = [p for p in pathlib.Path(".").iterdir() if p.is_file()]

Alternatively, use pathlib.Path() instead of pathlib.Path(".")

Use glob method in pathlib.Path()

import pathlib

py = pathlib.Path().glob("*.py")
for file in py:
    print(file)

>>> stack_overflow_list.py
>>> stack_overflow_list_tkinter.py

Get all and only files with os.walk

import os
x = [i[2] for i in os.walk(".")]
y=[]
for t in x:
    for f in t:
        y.append(f)
print(y)

>>> ["append_to_list.py", "data.txt", "data1.txt", "data2.txt", "data_180617", "os_walk.py", "READ2.py", "read_data.py", "somma_defaltdic.py", "substitute_words.py", "sum_data.py", "data.txt", "data1.txt", "data_180617"]

Get only files with next and walk in a directory

 import os
 x = next(os.walk("F://python"))[2]
 print(x)
 
 >>> ["calculator.bat","calculator.py"]

Get only directories with next and walk in a directory

 import os
 next(os.walk("F://python"))[1] # for the current dir use (".")
 
 >>> ["python3","others"]

Get all the subdir names with walk

for r,d,f in os.walk("F:\_python"):
    for dirs in d:
        print(dirs)

>>> .vscode
>>> pyexcel
>>> pyschool.py
>>> subtitles
>>> _metaprogramming
>>> .ipynb_checkpoints

os.scandir() from Python 3.5 and greater

import os
x = [f.name for f in os.scandir() if f.is_file()]
print(x)

>>> ["calculator.bat","calculator.py"]

# Another example with scandir (a little variation from docs.python.org)
# This one is more efficient than os.listdir.
# In this case, it shows the files only in the current directory
# where the script is executed.

import os
with os.scandir() as i:
    for entry in i:
        if entry.is_file():
            print(entry.name)

>>> ebookmaker.py
>>> error.PNG
>>> exemaker.bat
>>> guiprova.mp3
>>> setup.py
>>> speakgui4.py
>>> speak_gui2.py
>>> speak_gui3.py
>>> thumb.PNG

Examples:

Ex. 1: How many files are there in the subdirectories?

In this example, we look for the number of files that are included in all the directory and its subdirectories.

import os

def count(dir, counter=0):
    "returns number of files in dir and subdirs"
    for pack in os.walk(dir):
        for f in pack[2]:
            counter += 1
    return dir + " : " + str(counter) + "files"

print(count("F:\python"))

>>> "F:\python" : 12057 files"

Ex.2: How to copy all files from a directory to another?

A script to make order in your computer finding all files of a type (default: pptx) and copying them in a new folder.

import os
import shutil
from path import path

destination = "F:\file_copied"
# os.makedirs(destination)

def copyfile(dir, filetype="pptx", counter=0):
    "Searches for pptx (or other - pptx is the default) files and copies them"
    for pack in os.walk(dir):
        for f in pack[2]:
            if f.endswith(filetype):
                fullpath = pack[0] + "\" + f
                print(fullpath)
                shutil.copy(fullpath, destination)
                counter += 1
    if counter > 0:
        print("-" * 30)
        print("	==> Found in: `" + dir + "` : " + str(counter) + " files
")

for dir in os.listdir():
    "searches for folders that starts with `_`"
    if dir[0] == "_":
        # copyfile(dir, filetype="pdf")
        copyfile(dir, filetype="txt")


>>> _compiti18Compito Contabilità 1conti.txt
>>> _compiti18Compito Contabilità 1modula4.txt
>>> _compiti18Compito Contabilità 1moduloa4.txt
>>> ------------------------
>>> ==> Found in: `_compiti18` : 3 files

Ex. 3: How to get all the files in a txt file

In case you want to create a txt file with all the file names:

import os
mylist = ""
with open("filelist.txt", "w", encoding="utf-8") as file:
    for eachfile in os.listdir():
        mylist += eachfile + "
"
    file.write(mylist)

Example: txt with all the files of an hard drive

"""
We are going to save a txt file with all the files in your directory.
We will use the function walk()
"""

import os

# see all the methods of os
# print(*dir(os), sep=", ")
listafile = []
percorso = []
with open("lista_file.txt", "w", encoding="utf-8") as testo:
    for root, dirs, files in os.walk("D:\"):
        for file in files:
            listafile.append(file)
            percorso.append(root + "\" + file)
            testo.write(file + "
")
listafile.sort()
print("N. of files", len(listafile))
with open("lista_file_ordinata.txt", "w", encoding="utf-8") as testo_ordinato:
    for file in listafile:
        testo_ordinato.write(file + "
")

with open("percorso.txt", "w", encoding="utf-8") as file_percorso:
    for file in percorso:
        file_percorso.write(file + "
")

os.system("lista_file.txt")
os.system("lista_file_ordinata.txt")
os.system("percorso.txt")

All the file of C: in one text file

This is a shorter version of the previous code. Change the folder where to start finding the files if you need to start from another position. This code generate a 50 mb on text file on my computer with something less then 500.000 lines with files with the complete path.

import os

with open("file.txt", "w", encoding="utf-8") as filewrite:
    for r, d, f in os.walk("C:\"):
        for file in f:
            filewrite.write(f"{r + file}
")

How to write a file with all paths in a folder of a type

With this function you can create a txt file that will have the name of a type of file that you look for (ex. pngfile.txt) with all the full path of all the files of that type. It can be useful sometimes, I think.

import os

def searchfiles(extension=".ttf", folder="H:\"):
    "Create a txt file with all the file of a type"
    with open(extension[1:] + "file.txt", "w", encoding="utf-8") as filewrite:
        for r, d, f in os.walk(folder):
            for file in f:
                if file.endswith(extension):
                    filewrite.write(f"{r + file}
")

# looking for png file (fonts) in the hard disk H:
searchfiles(".png", "H:\")

>>> H:4bs_18Dolphins5.png
>>> H:4bs_18Dolphins6.png
>>> H:4bs_18Dolphins7.png
>>> H:5_18marketing htmlassetsimageslogo2.png
>>> H:7z001.png
>>> H:7z002.png

(New) Find all files and open them with tkinter GUI

I just wanted to add in this 2019 a little app to search for all files in a dir and be able to open them by doubleclicking on the name of the file in the list. enter image description here

import tkinter as tk
import os

def searchfiles(extension=".txt", folder="H:\"):
    "insert all files in the listbox"
    for r, d, f in os.walk(folder):
        for file in f:
            if file.endswith(extension):
                lb.insert(0, r + "\" + file)

def open_file():
    os.startfile(lb.get(lb.curselection()[0]))

root = tk.Tk()
root.geometry("400x400")
bt = tk.Button(root, text="Search", command=lambda:searchfiles(".png", "H:\"))
bt.pack()
lb = tk.Listbox(root)
lb.pack(fill="both", expand=1)
lb.bind("<Double-Button>", lambda x: open_file())
root.mainloop()

Answer #3

I just used the following which was quite simple. First open a console then cd to where you"ve downloaded your file like some-package.whl and use

pip install some-package.whl

Note: if pip.exe is not recognized, you may find it in the "Scripts" directory from where python has been installed. If pip is not installed, this page can help: How do I install pip on Windows?

Note: for clarification
If you copy the *.whl file to your local drive (ex. C:some-dirsome-file.whl) use the following command line parameters --

pip install C:/some-dir/some-file.whl

Answer #4

This is the behaviour to adopt when the referenced object is deleted. It is not specific to Django; this is an SQL standard. Although Django has its own implementation on top of SQL. (1)

There are seven possible actions to take when such event occurs:

  • CASCADE: When the referenced object is deleted, also delete the objects that have references to it (when you remove a blog post for instance, you might want to delete comments as well). SQL equivalent: CASCADE.
  • PROTECT: Forbid the deletion of the referenced object. To delete it you will have to delete all objects that reference it manually. SQL equivalent: RESTRICT.
  • RESTRICT: (introduced in Django 3.1) Similar behavior as PROTECT that matches SQL"s RESTRICT more accurately. (See django documentation example)
  • SET_NULL: Set the reference to NULL (requires the field to be nullable). For instance, when you delete a User, you might want to keep the comments he posted on blog posts, but say it was posted by an anonymous (or deleted) user. SQL equivalent: SET NULL.
  • SET_DEFAULT: Set the default value. SQL equivalent: SET DEFAULT.
  • SET(...): Set a given value. This one is not part of the SQL standard and is entirely handled by Django.
  • DO_NOTHING: Probably a very bad idea since this would create integrity issues in your database (referencing an object that actually doesn"t exist). SQL equivalent: NO ACTION. (2)

Source: Django documentation

See also the documentation of PostgreSQL for instance.

In most cases, CASCADE is the expected behaviour, but for every ForeignKey, you should always ask yourself what is the expected behaviour in this situation. PROTECT and SET_NULL are often useful. Setting CASCADE where it should not, can potentially delete all of your database in cascade, by simply deleting a single user.


Additional note to clarify cascade direction

It"s funny to notice that the direction of the CASCADE action is not clear to many people. Actually, it"s funny to notice that only the CASCADE action is not clear. I understand the cascade behavior might be confusing, however you must think that it is the same direction as any other action. Thus, if you feel that CASCADE direction is not clear to you, it actually means that on_delete behavior is not clear to you.

In your database, a foreign key is basically represented by an integer field which value is the primary key of the foreign object. Let"s say you have an entry comment_A, which has a foreign key to an entry article_B. If you delete the entry comment_A, everything is fine. article_B used to live without comment_A and don"t bother if it"s deleted. However, if you delete article_B, then comment_A panics! It never lived without article_B and needs it, and it"s part of its attributes (article=article_B, but what is article_B???). This is where on_delete steps in, to determine how to resolve this integrity error, either by saying:

  • "No! Please! Don"t! I can"t live without you!" (which is said PROTECT or RESTRICT in Django/SQL)
  • "All right, if I"m not yours, then I"m nobody"s" (which is said SET_NULL)
  • "Good bye world, I can"t live without article_B" and commit suicide (this is the CASCADE behavior).
  • "It"s OK, I"ve got spare lover, and I"ll reference article_C from now" (SET_DEFAULT, or even SET(...)).
  • "I can"t face reality, and I"ll keep calling your name even if that"s the only thing left to me!" (DO_NOTHING)

I hope it makes cascade direction clearer. :)


Footnotes

(1) Django has its own implementation on top of SQL. And, as mentioned by @JoeMjr2 in the comments below, Django will not create the SQL constraints. If you want the constraints to be ensured by your database (for instance, if your database is used by another application, or if you hang in the database console from time to time), you might want to set the related constraints manually yourself. There is an open ticket to add support for database-level on delete constrains in Django.

(2) Actually, there is one case where DO_NOTHING can be useful: If you want to skip Django"s implementation and implement the constraint yourself at the database-level.

Answer #5

Running brew reinstall [email protected] didn"t work for my existing Python 2.7 virtual environments. Inside them there were still ERROR:root:code for hash sha1 was not found errors.

I encountered this problem after I ran brew upgrade openssl. And here"s the fix:

$ ls /usr/local/Cellar/openssl

...which shows

1.0.2t

According to the existing version, run:

$ brew switch openssl 1.0.2t

...which shows

Cleaning /usr/local/Cellar/openssl/1.0.2t
Opt link created for /usr/local/Cellar/openssl/1.0.2t

After that, run the following command in a Python 2.7 virtualenv:

(my-venv) $ python -c "import hashlib;m=hashlib.md5();print(m.hexdigest())"

...which shows

d41d8cd98f00b204e9800998ecf8427e

No more errors.

Answer #6

You opened the file in binary mode:

with open(fname, "rb") as f:

This means that all data read from the file is returned as bytes objects, not str. You cannot then use a string in a containment test:

if "some-pattern" in tmp: continue

You"d have to use a bytes object to test against tmp instead:

if b"some-pattern" in tmp: continue

or open the file as a textfile instead by replacing the "rb" mode with "r".

Answer #7

⚡️ TL;DR — One line solution.

All you have to do is:

sudo easy_install pip

2019: ⚠️easy_install has been deprecated. Check Method #2 below for preferred installation!

Details:

⚡️ OK, I read the solutions given above, but here"s an EASY solution to install pip.

MacOS comes with Python installed. But to make sure that you have Python installed open the terminal and run the following command.

python --version

If this command returns a version number that means Python exists. Which also means that you already have access to easy_install considering you are using macOS/OSX.

ℹ️ Now, all you have to do is run the following command.

sudo easy_install pip

After that, pip will be installed and you"ll be able to use it for installing other packages.

Let me know if you have any problems installing pip this way.

Cheers!

P.S. I ended up blogging a post about it. QuickTip: How Do I Install pip on macOS or OS X?


✅ UPDATE (Jan 2019): METHOD #2: Two line solution —

easy_install has been deprecated. Please use get-pip.py instead.

First of all download the get-pip file

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py

Now run this file to install pip

python get-pip.py

That should do it.

Another gif you said? Here ya go!

Answer #8

I noticed that every now and then I need to Google fopen all over again, just to build a mental image of what the primary differences between the modes are. So, I thought a diagram will be faster to read next time. Maybe someone else will find that helpful too.

Answer #9

It helps to install a python package foo on your machine (can also be in virtualenv) so that you can import the package foo from other projects and also from [I]Python prompts.

It does the similar job of pip, easy_install etc.,


Using setup.py

Let"s start with some definitions:

Package - A folder/directory that contains __init__.py file.
Module - A valid python file with .py extension.
Distribution - How one package relates to other packages and modules.

Let"s say you want to install a package named foo. Then you do,

$ git clone https://github.com/user/foo  
$ cd foo
$ python setup.py install

Instead, if you don"t want to actually install it but still would like to use it. Then do,

$ python setup.py develop  

This command will create symlinks to the source directory within site-packages instead of copying things. Because of this, it is quite fast (particularly for large packages).


Creating setup.py

If you have your package tree like,

foo
├── foo
│   ├── data_struct.py
│   ├── __init__.py
│   └── internals.py
├── README
├── requirements.txt
└── setup.py

Then, you do the following in your setup.py script so that it can be installed on some machine:

from setuptools import setup

setup(
   name="foo",
   version="1.0",
   description="A useful module",
   author="Man Foo",
   author_email="[email protected]",
   packages=["foo"],  #same as name
   install_requires=["wheel", "bar", "greek"], #external packages as dependencies
)

Instead, if your package tree is more complex like the one below:

foo
├── foo
│   ├── data_struct.py
│   ├── __init__.py
│   └── internals.py
├── README
├── requirements.txt
├── scripts
│   ├── cool
│   └── skype
└── setup.py

Then, your setup.py in this case would be like:

from setuptools import setup

setup(
   name="foo",
   version="1.0",
   description="A useful module",
   author="Man Foo",
   author_email="[email protected]",
   packages=["foo"],  #same as name
   install_requires=["wheel", "bar", "greek"], #external packages as dependencies
   scripts=[
            "scripts/cool",
            "scripts/skype",
           ]
)

Add more stuff to (setup.py) & make it decent:

from setuptools import setup

with open("README", "r") as f:
    long_description = f.read()

setup(
   name="foo",
   version="1.0",
   description="A useful module",
   license="MIT",
   long_description=long_description,
   author="Man Foo",
   author_email="[email protected]",
   url="http://www.foopackage.com/",
   packages=["foo"],  #same as name
   install_requires=["wheel", "bar", "greek"], #external packages as dependencies
   scripts=[
            "scripts/cool",
            "scripts/skype",
           ]
)

The long_description is used in pypi.org as the README description of your package.


And finally, you"re now ready to upload your package to PyPi.org so that others can install your package using pip install yourpackage.

At this point there are two options.

  • publish in the temporary test.pypi.org server to make oneself familiarize with the procedure, and then publish it on the permanent pypi.org server for the public to use your package.
  • publish straight away on the permanent pypi.org server, if you are already familiar with the procedure and have your user credentials (e.g., username, password, package name)

Once your package name is registered in pypi.org, nobody can claim or use it. Python packaging suggests the twine package for uploading purposes (of your package to PyPi). Thus,

(1) the first step is to locally build the distributions using:

# prereq: wheel (pip install wheel)  
$ python setup.py sdist bdist_wheel   

(2) then using twine for uploading either to test.pypi.org or pypi.org:

$ twine upload --repository testpypi dist/*  
username: ***  
password: ***  

It will take few minutes for the package to appear on test.pypi.org. Once you"re satisfied with it, you can then upload your package to the real & permanent index of pypi.org simply with:

$ twine upload dist/*  

Optionally, you can also sign the files in your package with a GPG by:

$ twine upload dist/* --sign 

Bonus Reading:

Answer #10

tl;dr / quick fix

  • Don"t decode/encode willy nilly
  • Don"t assume your strings are UTF-8 encoded
  • Try to convert strings to Unicode strings as soon as possible in your code
  • Fix your locale: How to solve UnicodeDecodeError in Python 3.6?
  • Don"t be tempted to use quick reload hacks

Unicode Zen in Python 2.x - The Long Version

Without seeing the source it"s difficult to know the root cause, so I"ll have to speak generally.

UnicodeDecodeError: "ascii" codec can"t decode byte generally happens when you try to convert a Python 2.x str that contains non-ASCII to a Unicode string without specifying the encoding of the original string.

In brief, Unicode strings are an entirely separate type of Python string that does not contain any encoding. They only hold Unicode point codes and therefore can hold any Unicode point from across the entire spectrum. Strings contain encoded text, beit UTF-8, UTF-16, ISO-8895-1, GBK, Big5 etc. Strings are decoded to Unicode and Unicodes are encoded to strings. Files and text data are always transferred in encoded strings.

The Markdown module authors probably use unicode() (where the exception is thrown) as a quality gate to the rest of the code - it will convert ASCII or re-wrap existing Unicodes strings to a new Unicode string. The Markdown authors can"t know the encoding of the incoming string so will rely on you to decode strings to Unicode strings before passing to Markdown.

Unicode strings can be declared in your code using the u prefix to strings. E.g.

>>> my_u = u"my ünicôdé strįng"
>>> type(my_u)
<type "unicode">

Unicode strings may also come from file, databases and network modules. When this happens, you don"t need to worry about the encoding.

Gotchas

Conversion from str to Unicode can happen even when you don"t explicitly call unicode().

The following scenarios cause UnicodeDecodeError exceptions:

# Explicit conversion without encoding
unicode("€")

# New style format string into Unicode string
# Python will try to convert value string to Unicode first
u"The currency is: {}".format("€")

# Old style format string into Unicode string
# Python will try to convert value string to Unicode first
u"The currency is: %s" % "€"

# Append string to Unicode
# Python will try to convert string to Unicode first
u"The currency is: " + "€"         

Examples

In the following diagram, you can see how the word café has been encoded in either "UTF-8" or "Cp1252" encoding depending on the terminal type. In both examples, caf is just regular ascii. In UTF-8, é is encoded using two bytes. In "Cp1252", é is 0xE9 (which is also happens to be the Unicode point value (it"s no coincidence)). The correct decode() is invoked and conversion to a Python Unicode is successfull: Diagram of a string being converted to a Python Unicode string

In this diagram, decode() is called with ascii (which is the same as calling unicode() without an encoding given). As ASCII can"t contain bytes greater than 0x7F, this will throw a UnicodeDecodeError exception:

Diagram of a string being converted to a Python Unicode string with the wrong encoding

The Unicode Sandwich

It"s good practice to form a Unicode sandwich in your code, where you decode all incoming data to Unicode strings, work with Unicodes, then encode to strs on the way out. This saves you from worrying about the encoding of strings in the middle of your code.

Input / Decode

Source code

If you need to bake non-ASCII into your source code, just create Unicode strings by prefixing the string with a u. E.g.

u"Zürich"

To allow Python to decode your source code, you will need to add an encoding header to match the actual encoding of your file. For example, if your file was encoded as "UTF-8", you would use:

# encoding: utf-8

This is only necessary when you have non-ASCII in your source code.

Files

Usually non-ASCII data is received from a file. The io module provides a TextWrapper that decodes your file on the fly, using a given encoding. You must use the correct encoding for the file - it can"t be easily guessed. For example, for a UTF-8 file:

import io
with io.open("my_utf8_file.txt", "r", encoding="utf-8") as my_file:
     my_unicode_string = my_file.read() 

my_unicode_string would then be suitable for passing to Markdown. If a UnicodeDecodeError from the read() line, then you"ve probably used the wrong encoding value.

CSV Files

The Python 2.7 CSV module does not support non-ASCII characters üò©. Help is at hand, however, with https://pypi.python.org/pypi/backports.csv.

Use it like above but pass the opened file to it:

from backports import csv
import io
with io.open("my_utf8_file.txt", "r", encoding="utf-8") as my_file:
    for row in csv.reader(my_file):
        yield row

Databases

Most Python database drivers can return data in Unicode, but usually require a little configuration. Always use Unicode strings for SQL queries.

MySQL

In the connection string add:

charset="utf8",
use_unicode=True

E.g.

>>> db = MySQLdb.connect(host="localhost", user="root", passwd="passwd", db="sandbox", use_unicode=True, charset="utf8")
PostgreSQL

Add:

psycopg2.extensions.register_type(psycopg2.extensions.UNICODE)
psycopg2.extensions.register_type(psycopg2.extensions.UNICODEARRAY)

HTTP

Web pages can be encoded in just about any encoding. The Content-type header should contain a charset field to hint at the encoding. The content can then be decoded manually against this value. Alternatively, Python-Requests returns Unicodes in response.text.

Manually

If you must decode strings manually, you can simply do my_string.decode(encoding), where encoding is the appropriate encoding. Python 2.x supported codecs are given here: Standard Encodings. Again, if you get UnicodeDecodeError then you"ve probably got the wrong encoding.

The meat of the sandwich

Work with Unicodes as you would normal strs.

Output

stdout / printing

print writes through the stdout stream. Python tries to configure an encoder on stdout so that Unicodes are encoded to the console"s encoding. For example, if a Linux shell"s locale is en_GB.UTF-8, the output will be encoded to UTF-8. On Windows, you will be limited to an 8bit code page.

An incorrectly configured console, such as corrupt locale, can lead to unexpected print errors. PYTHONIOENCODING environment variable can force the encoding for stdout.

Files

Just like input, io.open can be used to transparently convert Unicodes to encoded byte strings.

Database

The same configuration for reading will allow Unicodes to be written directly.

Python 3

Python 3 is no more Unicode capable than Python 2.x is, however it is slightly less confused on the topic. E.g the regular str is now a Unicode string and the old str is now bytes.

The default encoding is UTF-8, so if you .decode() a byte string without giving an encoding, Python 3 uses UTF-8 encoding. This probably fixes 50% of people"s Unicode problems.

Further, open() operates in text mode by default, so returns decoded str (Unicode ones). The encoding is derived from your locale, which tends to be UTF-8 on Un*x systems or an 8-bit code page, such as windows-1251, on Windows boxes.

Why you shouldn"t use sys.setdefaultencoding("utf8")

It"s a nasty hack (there"s a reason you have to use reload) that will only mask problems and hinder your migration to Python 3.x. Understand the problem, fix the root cause and enjoy Unicode zen. See Why should we NOT use sys.setdefaultencoding("utf-8") in a py script? for further details

Tutorials