Absolute Deviation and Absolute Mean Deviation Using NumPy | python

absolute | iat | mean | NumPy | Python Methods and Functions | sin

Rejection:
Rejection — it is a measure of the difference between the observed value of a variable and some other value, often the mean of that variable.

Absolute Deviation:
The absolute deviation of a dataset item — it is the absolute difference between this element and this point. The absolute deviation of observations X1, X2, X3,… .., Xn around the value A is defined as —

For discrete (ungrouped) data

For continuous (ungrouped) data

Absolute mean deviation:
Absolute mean deviation measures spread and spread of data, preferably median, in terms of absolute deviation. The absolute deviation of observations X1, X2, X3, ……, Xn is minimal when measured around the median, i.e. A — median of data. Then the resulting absolute deviation is called the absolute average deviation and is defined as:

For discrete (ungrouped) data — 

For continuous (ungrouped) data — 

Decide:

  1. A dataset with a higher absolute mean deviation (or absolute deviation) has more variability.
  2. A dataset with a lower absolute mean deviation (or absolute deviation) is preferred. 
    - & gt; If there are two datasets with absolute averages AMD1 and AMD2 and AMD1 & gt; AMD2, then AMD1 data is considered to have more volatility than AMD2 data.

Example:
Below is the number of candidates enrolled each day within the last 20 days for Python.Engineering -DS & amp; Algo — 
75, 69, 56, 46, 47, 79, 92, 97, 89, 88, 36, 96, 105, 32, 116, 101, 79, 93, 91, 112

Code # 1: Absolute rejection using NumPy

# Import mean, absolute value from numy

from numpy import mean, absolute

 

data = [ 75 , 69 , 56 , 46 , 47 , 79 , 92 , 97 , 89 , 88 ,

36 , 96 , 105 , 32 , 116 , 101 , 79 , 93 , 91 , 112 ]

 
# Suppose any point A about which # absolute deviation is calculated

A = 79

 

sum = 0   # Initialize sum to 0

 
# Absolute deviation calculation

  

for i in range ( len (data)):

av = absolute (data [i] - A)  # Absolute difference value

  # of each data point and A

 

# Sum all these absolute values ​​

sum = sum + av 

 
# Amount divided by the length of data outputs
# absolute rejection

print ( sum / len (data)) 

Exit:

 20.15  

Code # 2: Absolute mean deviation using NumPy

# Import mean, absolute value from numy

from numpy import mean, absolute

 

data = [ 75 , 69 , 56 , 46 , 47 , 79 , 92 , 97 , 89 , 88

36 , 96 , 105 , 32 , 116 , 101 , 79 , 93 , 91 , 112 ]

 
# Absolute mean deviation

mean (absolute (data - mean (data)))

Exit:

20.055

Code # 3: Absolute mean deviation using pandas

# Import pandas library as pd

import pandas as pd

 

data = [ 75 , 69 , 56 , 46 , 47 , 79 , 92 , 97 , 89 , 88 ,

  36 , 96 , 105 , 32 , 116 , 101 , 79 , 93 , 91 , 112 ]

 
# Create a given data data frame

df = pd.DataFrame (data)

  
# Absolute mean deviation

df.mad ()  # mad () - function of mean absolute deviation

Exit:

 20.055 




Absolute Deviation and Absolute Mean Deviation Using NumPy | python: StackOverflow Questions

How to get an absolute file path in Python

Question by izb

Given a path such as "mydir/myfile.txt", how do I find the file"s absolute path relative to the current working directory in Python? E.g. on Windows, I might end up with:

"C:/example/cwd/mydir/myfile.txt"

What does from __future__ import absolute_import actually do?

I have answered a question regarding absolute imports in Python, which I thought I understood based on reading the Python 2.5 changelog and accompanying PEP. However, upon installing Python 2.5 and attempting to craft an example of properly using from __future__ import absolute_import, I realize things are not so clear.

Straight from the changelog linked above, this statement accurately summarized my understanding of the absolute import change:

Let"s say you have a package directory like this:

pkg/
pkg/__init__.py
pkg/main.py
pkg/string.py

This defines a package named pkg containing the pkg.main and pkg.string submodules.

Consider the code in the main.py module. What happens if it executes the statement import string? In Python 2.4 and earlier, it will first look in the package"s directory to perform a relative import, finds pkg/string.py, imports the contents of that file as the pkg.string module, and that module is bound to the name "string" in the pkg.main module"s namespace.

So I created this exact directory structure:

$ ls -R
.:
pkg/

./pkg:
__init__.py  main.py  string.py

__init__.py and string.py are empty. main.py contains the following code:

import string
print string.ascii_uppercase

As expected, running this with Python 2.5 fails with an AttributeError:

$ python2.5 pkg/main.py
Traceback (most recent call last):
  File "pkg/main.py", line 2, in <module>
    print string.ascii_uppercase
AttributeError: "module" object has no attribute "ascii_uppercase"

However, further along in the 2.5 changelog, we find this (emphasis added):

In Python 2.5, you can switch import"s behaviour to absolute imports using a from __future__ import absolute_import directive. This absolute-import behaviour will become the default in a future version (probably Python 2.7). Once absolute imports are the default, import string will always find the standard library"s version.

I thus created pkg/main2.py, identical to main.py but with the additional future import directive. It now looks like this:

from __future__ import absolute_import
import string
print string.ascii_uppercase

Running this with Python 2.5, however... fails with an AttributeError:

$ python2.5 pkg/main2.py
Traceback (most recent call last):
  File "pkg/main2.py", line 3, in <module>
    print string.ascii_uppercase
AttributeError: "module" object has no attribute "ascii_uppercase"

This pretty flatly contradicts the statement that import string will always find the std-lib version with absolute imports enabled. What"s more, despite the warning that absolute imports are scheduled to become the "new default" behavior, I hit this same problem using both Python 2.7, with or without the __future__ directive:

$ python2.7 pkg/main.py
Traceback (most recent call last):
  File "pkg/main.py", line 2, in <module>
    print string.ascii_uppercase
AttributeError: "module" object has no attribute "ascii_uppercase"

$ python2.7 pkg/main2.py
Traceback (most recent call last):
  File "pkg/main2.py", line 3, in <module>
    print string.ascii_uppercase
AttributeError: "module" object has no attribute "ascii_uppercase"

as well as Python 3.5, with or without (assuming the print statement is changed in both files):

$ python3.5 pkg/main.py
Traceback (most recent call last):
  File "pkg/main.py", line 2, in <module>
    print(string.ascii_uppercase)
AttributeError: module "string" has no attribute "ascii_uppercase"

$ python3.5 pkg/main2.py
Traceback (most recent call last):
  File "pkg/main2.py", line 3, in <module>
    print(string.ascii_uppercase)
AttributeError: module "string" has no attribute "ascii_uppercase"

I have tested other variations of this. Instead of string.py, I have created an empty module -- a directory named string containing only an empty __init__.py -- and instead of issuing imports from main.py, I have cd"d to pkg and run imports directly from the REPL. Neither of these variations (nor a combination of them) changed the results above. I cannot reconcile this with what I have read about the __future__ directive and absolute imports.

It seems to me that this is easily explicable by the following (this is from the Python 2 docs but this statement remains unchanged in the same docs for Python 3):

sys.path

(...)

As initialized upon program startup, the first item of this list, path[0], is the directory containing the script that was used to invoke the Python interpreter. If the script directory is not available (e.g. if the interpreter is invoked interactively or if the script is read from standard input), path[0] is the empty string, which directs Python to search modules in the current directory first.

So what am I missing? Why does the __future__ statement seemingly not do what it says, and what is the resolution of this contradiction between these two sections of documentation, as well as between described and actual behavior?

How to check if a path is absolute path or relative path in a cross-platform way with Python?

UNIX absolute path starts with "/", whereas Windows starts with alphabet "C:" or "". Does python have a standard function to check if a path is absolute or relative?

Get relative path from comparing two absolute paths

Say, I have two absolute paths. I need to check if the location referring to by one of the paths is a descendant of the other. If true, I need to find out the relative path of the descendant from the ancestor. What"s a good way to implement this in Python? Any library that I can benefit from?

How to join absolute and relative urls?

I have two urls:

url1 = "http://127.0.0.1/test1/test2/test3/test5.xml"
url2 = "../../test4/test6.xml"

How can I get an absolute url for url2?

Is module __file__ attribute absolute or relative?

I"m having trouble understanding __file__. From what I understand, __file__ returns the absolute path from which the module was loaded.

I"m having problem producing this: I have a abc.py with one statement print __file__, running from /d/projects/ python abc.py returns abc.py. running from /d/ returns projects/abc.py. Any reasons why?

Answer #1

os.listdir() - list in the current directory

With listdir in os module you get the files and the folders in the current dir

 import os
 arr = os.listdir()
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

Looking in a directory

arr = os.listdir("c:\files")

glob from glob

with glob you can specify a type of file to list like this

import glob

txtfiles = []
for file in glob.glob("*.txt"):
    txtfiles.append(file)

glob in a list comprehension

mylist = [f for f in glob.glob("*.txt")]

get the full path of only files in the current directory

import os
from os import listdir
from os.path import isfile, join

cwd = os.getcwd()
onlyfiles = [os.path.join(cwd, f) for f in os.listdir(cwd) if 
os.path.isfile(os.path.join(cwd, f))]
print(onlyfiles) 

["G:\getfilesname\getfilesname.py", "G:\getfilesname\example.txt"]

Getting the full path name with os.path.abspath

You get the full path in return

 import os
 files_path = [os.path.abspath(x) for x in os.listdir()]
 print(files_path)
 
 ["F:\documentiapplications.txt", "F:\documenticollections.txt"]

Walk: going through sub directories

os.walk returns the root, the directories list and the files list, that is why I unpacked them in r, d, f in the for loop; it, then, looks for other files and directories in the subfolders of the root and so on until there are no subfolders.

import os

# Getting the current work directory (cwd)
thisdir = os.getcwd()

# r=root, d=directories, f = files
for r, d, f in os.walk(thisdir):
    for file in f:
        if file.endswith(".docx"):
            print(os.path.join(r, file))

os.listdir(): get files in the current directory (Python 2)

In Python 2, if you want the list of the files in the current directory, you have to give the argument as "." or os.getcwd() in the os.listdir method.

 import os
 arr = os.listdir(".")
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

To go up in the directory tree

# Method 1
x = os.listdir("..")

# Method 2
x= os.listdir("/")

Get files: os.listdir() in a particular directory (Python 2 and 3)

 import os
 arr = os.listdir("F:\python")
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

Get files of a particular subdirectory with os.listdir()

import os

x = os.listdir("./content")

os.walk(".") - current directory

 import os
 arr = next(os.walk("."))[2]
 print(arr)
 
 >>> ["5bs_Turismo1.pdf", "5bs_Turismo1.pptx", "esperienza.txt"]

next(os.walk(".")) and os.path.join("dir", "file")

 import os
 arr = []
 for d,r,f in next(os.walk("F:\_python")):
     for file in f:
         arr.append(os.path.join(r,file))

 for f in arr:
     print(files)

>>> F:\_python\dict_class.py
>>> F:\_python\programmi.txt

next(os.walk("F:\") - get the full path - list comprehension

 [os.path.join(r,file) for r,d,f in next(os.walk("F:\_python")) for file in f]
 
 >>> ["F:\_python\dict_class.py", "F:\_python\programmi.txt"]

os.walk - get full path - all files in sub dirs**

x = [os.path.join(r,file) for r,d,f in os.walk("F:\_python") for file in f]
print(x)

>>> ["F:\_python\dict.py", "F:\_python\progr.txt", "F:\_python\readl.py"]

os.listdir() - get only txt files

 arr_txt = [x for x in os.listdir() if x.endswith(".txt")]
 print(arr_txt)
 
 >>> ["work.txt", "3ebooks.txt"]

Using glob to get the full path of the files

If I should need the absolute path of the files:

from path import path
from glob import glob
x = [path(f).abspath() for f in glob("F:\*.txt")]
for f in x:
    print(f)

>>> F:acquistionline.txt
>>> F:acquisti_2018.txt
>>> F:ootstrap_jquery_ecc.txt

Using os.path.isfile to avoid directories in the list

import os.path
listOfFiles = [f for f in os.listdir() if os.path.isfile(f)]
print(listOfFiles)

>>> ["a simple game.py", "data.txt", "decorator.py"]

Using pathlib from Python 3.4

import pathlib

flist = []
for p in pathlib.Path(".").iterdir():
    if p.is_file():
        print(p)
        flist.append(p)

 >>> error.PNG
 >>> exemaker.bat
 >>> guiprova.mp3
 >>> setup.py
 >>> speak_gui2.py
 >>> thumb.PNG

With list comprehension:

flist = [p for p in pathlib.Path(".").iterdir() if p.is_file()]

Alternatively, use pathlib.Path() instead of pathlib.Path(".")

Use glob method in pathlib.Path()

import pathlib

py = pathlib.Path().glob("*.py")
for file in py:
    print(file)

>>> stack_overflow_list.py
>>> stack_overflow_list_tkinter.py

Get all and only files with os.walk

import os
x = [i[2] for i in os.walk(".")]
y=[]
for t in x:
    for f in t:
        y.append(f)
print(y)

>>> ["append_to_list.py", "data.txt", "data1.txt", "data2.txt", "data_180617", "os_walk.py", "READ2.py", "read_data.py", "somma_defaltdic.py", "substitute_words.py", "sum_data.py", "data.txt", "data1.txt", "data_180617"]

Get only files with next and walk in a directory

 import os
 x = next(os.walk("F://python"))[2]
 print(x)
 
 >>> ["calculator.bat","calculator.py"]

Get only directories with next and walk in a directory

 import os
 next(os.walk("F://python"))[1] # for the current dir use (".")
 
 >>> ["python3","others"]

Get all the subdir names with walk

for r,d,f in os.walk("F:\_python"):
    for dirs in d:
        print(dirs)

>>> .vscode
>>> pyexcel
>>> pyschool.py
>>> subtitles
>>> _metaprogramming
>>> .ipynb_checkpoints

os.scandir() from Python 3.5 and greater

import os
x = [f.name for f in os.scandir() if f.is_file()]
print(x)

>>> ["calculator.bat","calculator.py"]

# Another example with scandir (a little variation from docs.python.org)
# This one is more efficient than os.listdir.
# In this case, it shows the files only in the current directory
# where the script is executed.

import os
with os.scandir() as i:
    for entry in i:
        if entry.is_file():
            print(entry.name)

>>> ebookmaker.py
>>> error.PNG
>>> exemaker.bat
>>> guiprova.mp3
>>> setup.py
>>> speakgui4.py
>>> speak_gui2.py
>>> speak_gui3.py
>>> thumb.PNG

Examples:

Ex. 1: How many files are there in the subdirectories?

In this example, we look for the number of files that are included in all the directory and its subdirectories.

import os

def count(dir, counter=0):
    "returns number of files in dir and subdirs"
    for pack in os.walk(dir):
        for f in pack[2]:
            counter += 1
    return dir + " : " + str(counter) + "files"

print(count("F:\python"))

>>> "F:\python" : 12057 files"

Ex.2: How to copy all files from a directory to another?

A script to make order in your computer finding all files of a type (default: pptx) and copying them in a new folder.

import os
import shutil
from path import path

destination = "F:\file_copied"
# os.makedirs(destination)

def copyfile(dir, filetype="pptx", counter=0):
    "Searches for pptx (or other - pptx is the default) files and copies them"
    for pack in os.walk(dir):
        for f in pack[2]:
            if f.endswith(filetype):
                fullpath = pack[0] + "\" + f
                print(fullpath)
                shutil.copy(fullpath, destination)
                counter += 1
    if counter > 0:
        print("-" * 30)
        print("	==> Found in: `" + dir + "` : " + str(counter) + " files
")

for dir in os.listdir():
    "searches for folders that starts with `_`"
    if dir[0] == "_":
        # copyfile(dir, filetype="pdf")
        copyfile(dir, filetype="txt")


>>> _compiti18Compito Contabilità 1conti.txt
>>> _compiti18Compito Contabilità 1modula4.txt
>>> _compiti18Compito Contabilità 1moduloa4.txt
>>> ------------------------
>>> ==> Found in: `_compiti18` : 3 files

Ex. 3: How to get all the files in a txt file

In case you want to create a txt file with all the file names:

import os
mylist = ""
with open("filelist.txt", "w", encoding="utf-8") as file:
    for eachfile in os.listdir():
        mylist += eachfile + "
"
    file.write(mylist)

Example: txt with all the files of an hard drive

"""
We are going to save a txt file with all the files in your directory.
We will use the function walk()
"""

import os

# see all the methods of os
# print(*dir(os), sep=", ")
listafile = []
percorso = []
with open("lista_file.txt", "w", encoding="utf-8") as testo:
    for root, dirs, files in os.walk("D:\"):
        for file in files:
            listafile.append(file)
            percorso.append(root + "\" + file)
            testo.write(file + "
")
listafile.sort()
print("N. of files", len(listafile))
with open("lista_file_ordinata.txt", "w", encoding="utf-8") as testo_ordinato:
    for file in listafile:
        testo_ordinato.write(file + "
")

with open("percorso.txt", "w", encoding="utf-8") as file_percorso:
    for file in percorso:
        file_percorso.write(file + "
")

os.system("lista_file.txt")
os.system("lista_file_ordinata.txt")
os.system("percorso.txt")

All the file of C: in one text file

This is a shorter version of the previous code. Change the folder where to start finding the files if you need to start from another position. This code generate a 50 mb on text file on my computer with something less then 500.000 lines with files with the complete path.

import os

with open("file.txt", "w", encoding="utf-8") as filewrite:
    for r, d, f in os.walk("C:\"):
        for file in f:
            filewrite.write(f"{r + file}
")

How to write a file with all paths in a folder of a type

With this function you can create a txt file that will have the name of a type of file that you look for (ex. pngfile.txt) with all the full path of all the files of that type. It can be useful sometimes, I think.

import os

def searchfiles(extension=".ttf", folder="H:\"):
    "Create a txt file with all the file of a type"
    with open(extension[1:] + "file.txt", "w", encoding="utf-8") as filewrite:
        for r, d, f in os.walk(folder):
            for file in f:
                if file.endswith(extension):
                    filewrite.write(f"{r + file}
")

# looking for png file (fonts) in the hard disk H:
searchfiles(".png", "H:\")

>>> H:4bs_18Dolphins5.png
>>> H:4bs_18Dolphins6.png
>>> H:4bs_18Dolphins7.png
>>> H:5_18marketing htmlassetsimageslogo2.png
>>> H:7z001.png
>>> H:7z002.png

(New) Find all files and open them with tkinter GUI

I just wanted to add in this 2019 a little app to search for all files in a dir and be able to open them by doubleclicking on the name of the file in the list. enter image description here

import tkinter as tk
import os

def searchfiles(extension=".txt", folder="H:\"):
    "insert all files in the listbox"
    for r, d, f in os.walk(folder):
        for file in f:
            if file.endswith(extension):
                lb.insert(0, r + "\" + file)

def open_file():
    os.startfile(lb.get(lb.curselection()[0]))

root = tk.Tk()
root.geometry("400x400")
bt = tk.Button(root, text="Search", command=lambda:searchfiles(".png", "H:\"))
bt.pack()
lb = tk.Listbox(root)
lb.pack(fill="both", expand=1)
lb.bind("<Double-Button>", lambda x: open_file())
root.mainloop()

Answer #2

Explanation

From PEP 328

Relative imports use a module"s __name__ attribute to determine that module"s position in the package hierarchy. If the module"s name does not contain any package information (e.g. it is set to "__main__") then relative imports are resolved as if the module were a top level module, regardless of where the module is actually located on the file system.

At some point PEP 338 conflicted with PEP 328:

... relative imports rely on __name__ to determine the current module"s position in the package hierarchy. In a main module, the value of __name__ is always "__main__", so explicit relative imports will always fail (as they only work for a module inside a package)

and to address the issue, PEP 366 introduced the top level variable __package__:

By adding a new module level attribute, this PEP allows relative imports to work automatically if the module is executed using the -m switch. A small amount of boilerplate in the module itself will allow the relative imports to work when the file is executed by name. [...] When it [the attribute] is present, relative imports will be based on this attribute rather than the module __name__ attribute. [...] When the main module is specified by its filename, then the __package__ attribute will be set to None. [...] When the import system encounters an explicit relative import in a module without __package__ set (or with it set to None), it will calculate and store the correct value (__name__.rpartition(".")[0] for normal modules and __name__ for package initialisation modules)

(emphasis mine)

If the __name__ is "__main__", __name__.rpartition(".")[0] returns empty string. This is why there"s empty string literal in the error description:

SystemError: Parent module "" not loaded, cannot perform relative import

The relevant part of the CPython"s PyImport_ImportModuleLevelObject function:

if (PyDict_GetItem(interp->modules, package) == NULL) {
    PyErr_Format(PyExc_SystemError,
            "Parent module %R not loaded, cannot perform relative "
            "import", package);
    goto error;
}

CPython raises this exception if it was unable to find package (the name of the package) in interp->modules (accessible as sys.modules). Since sys.modules is "a dictionary that maps module names to modules which have already been loaded", it"s now clear that the parent module must be explicitly absolute-imported before performing relative import.

Note: The patch from the issue 18018 has added another if block, which will be executed before the code above:

if (PyUnicode_CompareWithASCIIString(package, "") == 0) {
    PyErr_SetString(PyExc_ImportError,
            "attempted relative import with no known parent package");
    goto error;
} /* else if (PyDict_GetItem(interp->modules, package) == NULL) {
    ...
*/

If package (same as above) is empty string, the error message will be

ImportError: attempted relative import with no known parent package

However, you will only see this in Python 3.6 or newer.

Solution #1: Run your script using -m

Consider a directory (which is a Python package):

.
├── package
│   ├── __init__.py
│   ├── module.py
│   └── standalone.py

All of the files in package begin with the same 2 lines of code:

from pathlib import Path
print("Running" if __name__ == "__main__" else "Importing", Path(__file__).resolve())

I"m including these two lines only to make the order of operations obvious. We can ignore them completely, since they don"t affect the execution.

__init__.py and module.py contain only those two lines (i.e., they are effectively empty).

standalone.py additionally attempts to import module.py via relative import:

from . import module  # explicit relative import

We"re well aware that /path/to/python/interpreter package/standalone.py will fail. However, we can run the module with the -m command line option that will "search sys.path for the named module and execute its contents as the __main__ module":

[email protected]:~$ python3 -i -m package.standalone
Importing /home/vaultah/package/__init__.py
Running /home/vaultah/package/standalone.py
Importing /home/vaultah/package/module.py
>>> __file__
"/home/vaultah/package/standalone.py"
>>> __package__
"package"
>>> # The __package__ has been correctly set and module.py has been imported.
... # What"s inside sys.modules?
... import sys
>>> sys.modules["__main__"]
<module "package.standalone" from "/home/vaultah/package/standalone.py">
>>> sys.modules["package.module"]
<module "package.module" from "/home/vaultah/package/module.py">
>>> sys.modules["package"]
<module "package" from "/home/vaultah/package/__init__.py">

-m does all the importing stuff for you and automatically sets __package__, but you can do that yourself in the

Solution #2: Set __package__ manually

Please treat it as a proof of concept rather than an actual solution. It isn"t well-suited for use in real-world code.

PEP 366 has a workaround to this problem, however, it"s incomplete, because setting __package__ alone is not enough. You"re going to need to import at least N preceding packages in the module hierarchy, where N is the number of parent directories (relative to the directory of the script) that will be searched for the module being imported.

Thus,

  1. Add the parent directory of the Nth predecessor of the current module to sys.path

  2. Remove the current file"s directory from sys.path

  3. Import the parent module of the current module using its fully-qualified name

  4. Set __package__ to the fully-qualified name from 2

  5. Perform the relative import

I"ll borrow files from the Solution #1 and add some more subpackages:

package
├── __init__.py
├── module.py
└── subpackage
    ├── __init__.py
    └── subsubpackage
        ├── __init__.py
        └── standalone.py

This time standalone.py will import module.py from the package package using the following relative import

from ... import module  # N = 3

We"ll need to precede that line with the boilerplate code, to make it work.

import sys
from pathlib import Path

if __name__ == "__main__" and __package__ is None:
    file = Path(__file__).resolve()
    parent, top = file.parent, file.parents[3]

    sys.path.append(str(top))
    try:
        sys.path.remove(str(parent))
    except ValueError: # Already removed
        pass

    import package.subpackage.subsubpackage
    __package__ = "package.subpackage.subsubpackage"

from ... import module # N = 3

It allows us to execute standalone.py by filename:

[email protected]:~$ python3 package/subpackage/subsubpackage/standalone.py
Running /home/vaultah/package/subpackage/subsubpackage/standalone.py
Importing /home/vaultah/package/__init__.py
Importing /home/vaultah/package/subpackage/__init__.py
Importing /home/vaultah/package/subpackage/subsubpackage/__init__.py
Importing /home/vaultah/package/module.py

A more general solution wrapped in a function can be found here. Example usage:

if __name__ == "__main__" and __package__ is None:
    import_parents(level=3) # N = 3

from ... import module
from ...module.submodule import thing

Solution #3: Use absolute imports and setuptools

The steps are -

  1. Replace explicit relative imports with equivalent absolute imports

  2. Install package to make it importable

For instance, the directory structure may be as follows

.
├── project
│   ├── package
│   │   ├── __init__.py
│   │   ├── module.py
│   │   └── standalone.py
│   └── setup.py

where setup.py is

from setuptools import setup, find_packages
setup(
    name = "your_package_name",
    packages = find_packages(),
)

The rest of the files were borrowed from the Solution #1.

Installation will allow you to import the package regardless of your working directory (assuming there"ll be no naming issues).

We can modify standalone.py to use this advantage (step 1):

from package import module  # absolute import

Change your working directory to project and run /path/to/python/interpreter setup.py install --user (--user installs the package in your site-packages directory) (step 2):

[email protected]:~$ cd project
[email protected]:~/project$ python3 setup.py install --user

Let"s verify that it"s now possible to run standalone.py as a script:

[email protected]:~/project$ python3 -i package/standalone.py
Running /home/vaultah/project/package/standalone.py
Importing /home/vaultah/.local/lib/python3.6/site-packages/your_package_name-0.0.0-py3.6.egg/package/__init__.py
Importing /home/vaultah/.local/lib/python3.6/site-packages/your_package_name-0.0.0-py3.6.egg/package/module.py
>>> module
<module "package.module" from "/home/vaultah/.local/lib/python3.6/site-packages/your_package_name-0.0.0-py3.6.egg/package/module.py">
>>> import sys
>>> sys.modules["package"]
<module "package" from "/home/vaultah/.local/lib/python3.6/site-packages/your_package_name-0.0.0-py3.6.egg/package/__init__.py">
>>> sys.modules["package.module"]
<module "package.module" from "/home/vaultah/.local/lib/python3.6/site-packages/your_package_name-0.0.0-py3.6.egg/package/module.py">

Note: If you decide to go down this route, you"d be better off using virtual environments to install packages in isolation.

Solution #4: Use absolute imports and some boilerplate code

Frankly, the installation is not necessary - you could add some boilerplate code to your script to make absolute imports work.

I"m going to borrow files from Solution #1 and change standalone.py:

  1. Add the parent directory of package to sys.path before attempting to import anything from package using absolute imports:

    import sys
    from pathlib import Path # if you haven"t already done so
    file = Path(__file__).resolve()
    parent, root = file.parent, file.parents[1]
    sys.path.append(str(root))
    
    # Additionally remove the current file"s directory from sys.path
    try:
        sys.path.remove(str(parent))
    except ValueError: # Already removed
        pass
    
  2. Replace the relative import by the absolute import:

    from package import module  # absolute import
    

standalone.py runs without problems:

[email protected]:~$ python3 -i package/standalone.py
Running /home/vaultah/package/standalone.py
Importing /home/vaultah/package/__init__.py
Importing /home/vaultah/package/module.py
>>> module
<module "package.module" from "/home/vaultah/package/module.py">
>>> import sys
>>> sys.modules["package"]
<module "package" from "/home/vaultah/package/__init__.py">
>>> sys.modules["package.module"]
<module "package.module" from "/home/vaultah/package/module.py">

I feel that I should warn you: try not to do this, especially if your project has a complex structure.


As a side note, PEP 8 recommends the use of absolute imports, but states that in some scenarios explicit relative imports are acceptable:

Absolute imports are recommended, as they are usually more readable and tend to be better behaved (or at least give better error messages). [...] However, explicit relative imports are an acceptable alternative to absolute imports, especially when dealing with complex package layouts where using absolute imports would be unnecessarily verbose.

Answer #3

Python 3.5 adds the math.isclose and cmath.isclose functions as described in PEP 485.

If you"re using an earlier version of Python, the equivalent function is given in the documentation.

def isclose(a, b, rel_tol=1e-09, abs_tol=0.0):
    return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)

rel_tol is a relative tolerance, it is multiplied by the greater of the magnitudes of the two arguments; as the values get larger, so does the allowed difference between them while still considering them equal.

abs_tol is an absolute tolerance that is applied as-is in all cases. If the difference is less than either of those tolerances, the values are considered equal.

Answer #4

I posted a similar answer also to the question regarding imports from sibling packages. You can see it here.

Solution without sys.path hacks

Summary

  • Wrap the code into one folder (e.g. packaged_stuff)
  • Use create setup.py script where you use setuptools.setup().
  • Pip install the package in editable state with pip install -e <myproject_folder>
  • Import using from packaged_stuff.modulename import function_name

Setup

I assume the same folder structure as in the question

.
└── ptdraft
    ├── __init__.py
    ├── nib.py
    └── simulations
        ├── __init__.py
        └── life
            ├── __init__.py
            └── life.py

I call the . the root folder, and in my case it is located in C: mp est_imports.

Steps

  1. Add a setup.py to the root folder -- The contents of the setup.py can be simply

    from setuptools import setup, find_packages

    setup(name="myproject", version="1.0", packages=find_packages())

Basically "any" setup.py would work. This is just a minimal working example.

  1. Use a virtual environment

If you are familiar with virtual environments, activate one, and skip to the next step. Usage of virtual environments are not absolutely required, but they will really help you out in the long run (when you have more than 1 project ongoing..). The most basic steps are (run in the root folder)

  • Create virtual env
    • python -m venv venv
  • Activate virtual env
    • . venv/bin/activate (Linux) or ./venv/Scripts/activate (Win)
  • Deactivate virtual env
    • deactivate (Linux)

To learn more about this, just Google out "python virtualenv tutorial" or similar. You probably never need any other commands than creating, activating and deactivating.

Once you have made and activated a virtual environment, your console should give the name of the virtual environment in parenthesis

PS C:	mp	est_imports> python -m venv venv
PS C:	mp	est_imports> .venvScriptsactivate
(venv) PS C:	mp	est_imports>
  1. pip install your project in editable state

Install your top level package myproject using pip. The trick is to use the -e flag when doing the install. This way it is installed in an editable state, and all the edits made to the .py files will be automatically included in the installed package.

In the root directory, run

pip install -e . (note the dot, it stands for "current directory")

You can also see that it is installed by using pip freeze

(venv) PS C:	mp	est_imports> pip install -e .
Obtaining file:///C:/tmp/test_imports
Installing collected packages: myproject
  Running setup.py develop for myproject
Successfully installed myproject
(venv) PS C:	mp	est_imports> pip freeze
myproject==1.0
  1. Import by prepending mainfolder to every import

In this example, the mainfolder would be ptdraft. This has the advantage that you will not run into name collisions with other module names (from python standard library or 3rd party modules).


Example Usage

nib.py

def function_from_nib():
    print("I am the return value from function_from_nib!")

life.py

from ptdraft.nib import function_from_nib

if __name__ == "__main__":
    function_from_nib()

Running life.py

(venv) PS C:	mp	est_imports> python .ptdraftsimulationslifelife.py
I am the return value from function_from_nib!

Answer #5

To somewhat expand on the earlier answers here, there are a number of details which are commonly overlooked.

  • Prefer subprocess.run() over subprocess.check_call() and friends over subprocess.call() over subprocess.Popen() over os.system() over os.popen()
  • Understand and probably use text=True, aka universal_newlines=True.
  • Understand the meaning of shell=True or shell=False and how it changes quoting and the availability of shell conveniences.
  • Understand differences between sh and Bash
  • Understand how a subprocess is separate from its parent, and generally cannot change the parent.
  • Avoid running the Python interpreter as a subprocess of Python.

These topics are covered in some more detail below.

Prefer subprocess.run() or subprocess.check_call()

The subprocess.Popen() function is a low-level workhorse but it is tricky to use correctly and you end up copy/pasting multiple lines of code ... which conveniently already exist in the standard library as a set of higher-level wrapper functions for various purposes, which are presented in more detail in the following.

Here"s a paragraph from the documentation:

The recommended approach to invoking subprocesses is to use the run() function for all use cases it can handle. For more advanced use cases, the underlying Popen interface can be used directly.

Unfortunately, the availability of these wrapper functions differs between Python versions.

  • subprocess.run() was officially introduced in Python 3.5. It is meant to replace all of the following.
  • subprocess.check_output() was introduced in Python 2.7 / 3.1. It is basically equivalent to subprocess.run(..., check=True, stdout=subprocess.PIPE).stdout
  • subprocess.check_call() was introduced in Python 2.5. It is basically equivalent to subprocess.run(..., check=True)
  • subprocess.call() was introduced in Python 2.4 in the original subprocess module (PEP-324). It is basically equivalent to subprocess.run(...).returncode

High-level API vs subprocess.Popen()

The refactored and extended subprocess.run() is more logical and more versatile than the older legacy functions it replaces. It returns a CompletedProcess object which has various methods which allow you to retrieve the exit status, the standard output, and a few other results and status indicators from the finished subprocess.

subprocess.run() is the way to go if you simply need a program to run and return control to Python. For more involved scenarios (background processes, perhaps with interactive I/O with the Python parent program) you still need to use subprocess.Popen() and take care of all the plumbing yourself. This requires a fairly intricate understanding of all the moving parts and should not be undertaken lightly. The simpler Popen object represents the (possibly still-running) process which needs to be managed from your code for the remainder of the lifetime of the subprocess.

It should perhaps be emphasized that just subprocess.Popen() merely creates a process. If you leave it at that, you have a subprocess running concurrently alongside with Python, so a "background" process. If it doesn"t need to do input or output or otherwise coordinate with you, it can do useful work in parallel with your Python program.

Avoid os.system() and os.popen()

Since time eternal (well, since Python 2.5) the os module documentation has contained the recommendation to prefer subprocess over os.system():

The subprocess module provides more powerful facilities for spawning new processes and retrieving their results; using that module is preferable to using this function.

The problems with system() are that it"s obviously system-dependent and doesn"t offer ways to interact with the subprocess. It simply runs, with standard output and standard error outside of Python"s reach. The only information Python receives back is the exit status of the command (zero means success, though the meaning of non-zero values is also somewhat system-dependent).

PEP-324 (which was already mentioned above) contains a more detailed rationale for why os.system is problematic and how subprocess attempts to solve those issues.

os.popen() used to be even more strongly discouraged:

Deprecated since version 2.6: This function is obsolete. Use the subprocess module.

However, since sometime in Python 3, it has been reimplemented to simply use subprocess, and redirects to the subprocess.Popen() documentation for details.

Understand and usually use check=True

You"ll also notice that subprocess.call() has many of the same limitations as os.system(). In regular use, you should generally check whether the process finished successfully, which subprocess.check_call() and subprocess.check_output() do (where the latter also returns the standard output of the finished subprocess). Similarly, you should usually use check=True with subprocess.run() unless you specifically need to allow the subprocess to return an error status.

In practice, with check=True or subprocess.check_*, Python will throw a CalledProcessError exception if the subprocess returns a nonzero exit status.

A common error with subprocess.run() is to omit check=True and be surprised when downstream code fails if the subprocess failed.

On the other hand, a common problem with check_call() and check_output() was that users who blindly used these functions were surprised when the exception was raised e.g. when grep did not find a match. (You should probably replace grep with native Python code anyway, as outlined below.)

All things counted, you need to understand how shell commands return an exit code, and under what conditions they will return a non-zero (error) exit code, and make a conscious decision how exactly it should be handled.

Understand and probably use text=True aka universal_newlines=True

Since Python 3, strings internal to Python are Unicode strings. But there is no guarantee that a subprocess generates Unicode output, or strings at all.

(If the differences are not immediately obvious, Ned Batchelder"s Pragmatic Unicode is recommended, if not outright obligatory, reading. There is a 36-minute video presentation behind the link if you prefer, though reading the page yourself will probably take significantly less time.)

Deep down, Python has to fetch a bytes buffer and interpret it somehow. If it contains a blob of binary data, it shouldn"t be decoded into a Unicode string, because that"s error-prone and bug-inducing behavior - precisely the sort of pesky behavior which riddled many Python 2 scripts, before there was a way to properly distinguish between encoded text and binary data.

With text=True, you tell Python that you, in fact, expect back textual data in the system"s default encoding, and that it should be decoded into a Python (Unicode) string to the best of Python"s ability (usually UTF-8 on any moderately up to date system, except perhaps Windows?)

If that"s not what you request back, Python will just give you bytes strings in the stdout and stderr strings. Maybe at some later point you do know that they were text strings after all, and you know their encoding. Then, you can decode them.

normal = subprocess.run([external, arg],
    stdout=subprocess.PIPE, stderr=subprocess.PIPE,
    check=True,
    text=True)
print(normal.stdout)

convoluted = subprocess.run([external, arg],
    stdout=subprocess.PIPE, stderr=subprocess.PIPE,
    check=True)
# You have to know (or guess) the encoding
print(convoluted.stdout.decode("utf-8"))

Python 3.7 introduced the shorter and more descriptive and understandable alias text for the keyword argument which was previously somewhat misleadingly called universal_newlines.

Understand shell=True vs shell=False

With shell=True you pass a single string to your shell, and the shell takes it from there.

With shell=False you pass a list of arguments to the OS, bypassing the shell.

When you don"t have a shell, you save a process and get rid of a fairly substantial amount of hidden complexity, which may or may not harbor bugs or even security problems.

On the other hand, when you don"t have a shell, you don"t have redirection, wildcard expansion, job control, and a large number of other shell features.

A common mistake is to use shell=True and then still pass Python a list of tokens, or vice versa. This happens to work in some cases, but is really ill-defined and could break in interesting ways.

# XXX AVOID THIS BUG
buggy = subprocess.run("dig +short stackoverflow.com")

# XXX AVOID THIS BUG TOO
broken = subprocess.run(["dig", "+short", "stackoverflow.com"],
    shell=True)

# XXX DEFINITELY AVOID THIS
pathological = subprocess.run(["dig +short stackoverflow.com"],
    shell=True)

correct = subprocess.run(["dig", "+short", "stackoverflow.com"],
    # Probably don"t forget these, too
    check=True, text=True)

# XXX Probably better avoid shell=True
# but this is nominally correct
fixed_but_fugly = subprocess.run("dig +short stackoverflow.com",
    shell=True,
    # Probably don"t forget these, too
    check=True, text=True)

The common retort "but it works for me" is not a useful rebuttal unless you understand exactly under what circumstances it could stop working.

Refactoring Example

Very often, the features of the shell can be replaced with native Python code. Simple Awk or sed scripts should probably simply be translated to Python instead.

To partially illustrate this, here is a typical but slightly silly example which involves many shell features.

cmd = """while read -r x;
   do ping -c 3 "$x" | grep "round-trip min/avg/max"
   done <hosts.txt"""

# Trivial but horrible
results = subprocess.run(
    cmd, shell=True, universal_newlines=True, check=True)
print(results.stdout)

# Reimplement with shell=False
with open("hosts.txt") as hosts:
    for host in hosts:
        host = host.rstrip("
")  # drop newline
        ping = subprocess.run(
             ["ping", "-c", "3", host],
             text=True,
             stdout=subprocess.PIPE,
             check=True)
        for line in ping.stdout.split("
"):
             if "round-trip min/avg/max" in line:
                 print("{}: {}".format(host, line))

Some things to note here:

  • With shell=False you don"t need the quoting that the shell requires around strings. Putting quotes anyway is probably an error.
  • It often makes sense to run as little code as possible in a subprocess. This gives you more control over execution from within your Python code.
  • Having said that, complex shell pipelines are tedious and sometimes challenging to reimplement in Python.

The refactored code also illustrates just how much the shell really does for you with a very terse syntax -- for better or for worse. Python says explicit is better than implicit but the Python code is rather verbose and arguably looks more complex than this really is. On the other hand, it offers a number of points where you can grab control in the middle of something else, as trivially exemplified by the enhancement that we can easily include the host name along with the shell command output. (This is by no means challenging to do in the shell, either, but at the expense of yet another diversion and perhaps another process.)

Common Shell Constructs

For completeness, here are brief explanations of some of these shell features, and some notes on how they can perhaps be replaced with native Python facilities.

  • Globbing aka wildcard expansion can be replaced with glob.glob() or very often with simple Python string comparisons like for file in os.listdir("."): if not file.endswith(".png"): continue. Bash has various other expansion facilities like .{png,jpg} brace expansion and {1..100} as well as tilde expansion (~ expands to your home directory, and more generally ~account to the home directory of another user)
  • Shell variables like $SHELL or $my_exported_var can sometimes simply be replaced with Python variables. Exported shell variables are available as e.g. os.environ["SHELL"] (the meaning of export is to make the variable available to subprocesses -- a variable which is not available to subprocesses will obviously not be available to Python running as a subprocess of the shell, or vice versa. The env= keyword argument to subprocess methods allows you to define the environment of the subprocess as a dictionary, so that"s one way to make a Python variable visible to a subprocess). With shell=False you will need to understand how to remove any quotes; for example, cd "$HOME" is equivalent to os.chdir(os.environ["HOME"]) without quotes around the directory name. (Very often cd is not useful or necessary anyway, and many beginners omit the double quotes around the variable and get away with it until one day ...)
  • Redirection allows you to read from a file as your standard input, and write your standard output to a file. grep "foo" <inputfile >outputfile opens outputfile for writing and inputfile for reading, and passes its contents as standard input to grep, whose standard output then lands in outputfile. This is not generally hard to replace with native Python code.
  • Pipelines are a form of redirection. echo foo | nl runs two subprocesses, where the standard output of echo is the standard input of nl (on the OS level, in Unix-like systems, this is a single file handle). If you cannot replace one or both ends of the pipeline with native Python code, perhaps think about using a shell after all, especially if the pipeline has more than two or three processes (though look at the pipes module in the Python standard library or a number of more modern and versatile third-party competitors).
  • Job control lets you interrupt jobs, run them in the background, return them to the foreground, etc. The basic Unix signals to stop and continue a process are of course available from Python, too. But jobs are a higher-level abstraction in the shell which involve process groups etc which you have to understand if you want to do something like this from Python.
  • Quoting in the shell is potentially confusing until you understand that everything is basically a string. So ls -l / is equivalent to "ls" "-l" "/" but the quoting around literals is completely optional. Unquoted strings which contain shell metacharacters undergo parameter expansion, whitespace tokenization and wildcard expansion; double quotes prevent whitespace tokenization and wildcard expansion but allow parameter expansions (variable substitution, command substitution, and backslash processing). This is simple in theory but can get bewildering, especially when there are several layers of interpretation (a remote shell command, for example).

Understand differences between sh and Bash

subprocess runs your shell commands with /bin/sh unless you specifically request otherwise (except of course on Windows, where it uses the value of the COMSPEC variable). This means that various Bash-only features like arrays, [[ etc are not available.

If you need to use Bash-only syntax, you can pass in the path to the shell as executable="/bin/bash" (where of course if your Bash is installed somewhere else, you need to adjust the path).

subprocess.run("""
    # This for loop syntax is Bash only
    for((i=1;i<=$#;i++)); do
        # Arrays are Bash-only
        array[i]+=123
    done""",
    shell=True, check=True,
    executable="/bin/bash")

A subprocess is separate from its parent, and cannot change it

A somewhat common mistake is doing something like

subprocess.run("cd /tmp", shell=True)
subprocess.run("pwd", shell=True)  # Oops, doesn"t print /tmp

The same thing will happen if the first subprocess tries to set an environment variable, which of course will have disappeared when you run another subprocess, etc.

A child process runs completely separate from Python, and when it finishes, Python has no idea what it did (apart from the vague indicators that it can infer from the exit status and output from the child process). A child generally cannot change the parent"s environment; it cannot set a variable, change the working directory, or, in so many words, communicate with its parent without cooperation from the parent.

The immediate fix in this particular case is to run both commands in a single subprocess;

subprocess.run("cd /tmp; pwd", shell=True)

though obviously this particular use case isn"t very useful; instead, use the cwd keyword argument, or simply os.chdir() before running the subprocess. Similarly, for setting a variable, you can manipulate the environment of the current process (and thus also its children) via

os.environ["foo"] = "bar"

or pass an environment setting to a child process with

subprocess.run("echo "$foo"", shell=True, env={"foo": "bar"})

(not to mention the obvious refactoring subprocess.run(["echo", "bar"]); but echo is a poor example of something to run in a subprocess in the first place, of course).

Don"t run Python from Python

This is slightly dubious advice; there are certainly situations where it does make sense or is even an absolute requirement to run the Python interpreter as a subprocess from a Python script. But very frequently, the correct approach is simply to import the other Python module into your calling script and call its functions directly.

If the other Python script is under your control, and it isn"t a module, consider turning it into one. (This answer is too long already so I will not delve into details here.)

If you need parallelism, you can run Python functions in subprocesses with the multiprocessing module. There is also threading which runs multiple tasks in a single process (which is more lightweight and gives you more control, but also more constrained in that threads within a process are tightly coupled, and bound to a single GIL.)

Answer #6

I recommend anytree (I am the author).

Example:

from anytree import Node, RenderTree

udo = Node("Udo")
marc = Node("Marc", parent=udo)
lian = Node("Lian", parent=marc)
dan = Node("Dan", parent=udo)
jet = Node("Jet", parent=dan)
jan = Node("Jan", parent=dan)
joe = Node("Joe", parent=dan)

print(udo)
Node("/Udo")
print(joe)
Node("/Udo/Dan/Joe")

for pre, fill, node in RenderTree(udo):
    print("%s%s" % (pre, node.name))
Udo
├── Marc
│   └── Lian
└── Dan
    ├── Jet
    ├── Jan
    └── Joe

print(dan.children)
(Node("/Udo/Dan/Jet"), Node("/Udo/Dan/Jan"), Node("/Udo/Dan/Joe"))

anytree has also a powerful API with:

  • simple tree creation
  • simple tree modification
  • pre-order tree iteration
  • post-order tree iteration
  • resolve relative and absolute node paths
  • walking from one node to an other.
  • tree rendering (see example above)
  • node attach/detach hookups

Answer #7

Anaconda has not updated python internally to 3.6.

a) Method 1

  1. If you wanted to update you will type conda update python
  2. To update anaconda type conda update anaconda
  3. If you want to upgrade between major python version like 3.5 to 3.6, you"ll have to do

    conda install python=$pythonversion$
    

b) Method 2 - Create a new environment (Better Method)

conda create --name py36 python=3.6

c) To get the absolute latest python(3.6.5 at time of writing)

conda create --name py365 python=3.6.5 --channel conda-forge

You can see all this from here

Also, refer to this for force upgrading

EDIT: Anaconda now has a Python 3.6 version here

Answer #8

Consider the following example python package where a.py and b.py depend on each other:

/package
    __init__.py
    a.py
    b.py

Types of circular import problems

Circular import dependencies typically fall into two categories depending on what you"re trying to import and where you"re using it inside each module. (And whether you"re using python 2 or 3).

1. Errors importing modules with circular imports

In some cases, just importing a module with a circular import dependency can result in errors even if you"re not referencing anything from the imported module.

There are several standard ways to import a module in python

import package.a           # (1) Absolute import
import package.a as a_mod  # (2) Absolute import bound to different name
from package import a      # (3) Alternate absolute import
import a                   # (4) Implicit relative import (deprecated, python 2 only)
from . import a            # (5) Explicit relative import

Unfortunately, only the 1st and 4th options actually work when you have circular dependencies (the rest all raise ImportError or AttributeError). In general, you shouldn"t be using the 4th syntax, since it only works in python2 and runs the risk of clashing with other 3rd party modules. So really, only the first syntax is guaranteed to work.

EDIT: The ImportError and AttributeError issues only occur in python 2. In python 3 the import machinery has been rewritten and all of these import statements (with the exception of 4) will work, even with circular dependencies. While the solutions in this section may help refactoring python 3 code, they are mainly intended for people using python 2.

Absolute Import

Just use the first import syntax above. The downside to this method is that the import names can get super long for large packages.

In a.py

import package.b

In b.py

import package.a

Defer import until later

I"ve seen this method used in lots of packages, but it still feels hacky to me, and I dislike that I can"t look at the top of a module and see all its dependencies, I have to go searching through all the functions as well.

In a.py

def func():
    from package import b

In b.py

def func():
    from package import a

Put all imports in a central module

This also works, but has the same problem as the first method, where all the package and submodule calls get super long. It also has two major flaws -- it forces all the submodules to be imported, even if you"re only using one or two, and you still can"t look at any of the submodules and quickly see their dependencies at the top, you have to go sifting through functions.

In __init__.py

from . import a
from . import b

In a.py

import package

def func():
    package.b.some_object()

In b.py

import package

def func():
    package.a.some_object()

2. Errors using imported objects with circular dependencies

Now, while you may be able to import a module with a circular import dependency, you won"t be able to import any objects defined in the module or actually be able to reference that imported module anywhere in the top level of the module where you"re importing it. You can, however, use the imported module inside functions and code blocks that don"t get run on import.

For example, this will work:

package/a.py

import package.b

def func_a():
    return "a"

package/b.py

import package.a

def func_b():
    # Notice how package.a is only referenced *inside* a function
    # and not the top level of the module.
    return package.a.func_a() + "b"

But this won"t work

package/a.py

import package.b

class A(object):
    pass

package/b.py

import package.a

# package.a is referenced at the top level of the module
class B(package.a.A):
    pass

You"ll get an exception

AttributeError: module "package" has no attribute "a"

Generally, in most valid cases of circular dependencies, it"s possible to refactor or reorganize the code to prevent these errors and move module references inside a code block.

Answer #9

Tired of sys.path hacks?

There are plenty of sys.path.append -hacks available, but I found an alternative way of solving the problem in hand.

Summary

  • Wrap the code into one folder (e.g. packaged_stuff)
  • Create setup.py script where you use setuptools.setup(). (see minimal setup.py below)
  • Pip install the package in editable state with pip install -e <myproject_folder>
  • Import using from packaged_stuff.modulename import function_name

Setup

The starting point is the file structure you have provided, wrapped in a folder called myproject.

.
└── myproject
    ├── api
    │   ├── api_key.py
    │   ├── api.py
    │   └── __init__.py
    ├── examples
    │   ├── example_one.py
    │   ├── example_two.py
    │   └── __init__.py
    ├── LICENCE.md
    ├── README.md
    └── tests
        ├── __init__.py
        └── test_one.py

I will call the . the root folder, and in my example case it is located at C: mp est_imports.

api.py

As a test case, let"s use the following ./api/api.py

def function_from_api():
    return "I am the return value from api.api!"

test_one.py

from api.api import function_from_api

def test_function():
    print(function_from_api())

if __name__ == "__main__":
    test_function()

Try to run test_one:

PS C:	mp	est_imports> python .myproject	ests	est_one.py
Traceback (most recent call last):
  File ".myproject	ests	est_one.py", line 1, in <module>
    from api.api import function_from_api
ModuleNotFoundError: No module named "api"

Also trying relative imports wont work:

Using from ..api.api import function_from_api would result into

PS C:	mp	est_imports> python .myproject	ests	est_one.py
Traceback (most recent call last):
  File ".	ests	est_one.py", line 1, in <module>
    from ..api.api import function_from_api
ValueError: attempted relative import beyond top-level package

Steps

  1. Make a setup.py file to the root level directory

The contents for the setup.py would be*

from setuptools import setup, find_packages

setup(name="myproject", version="1.0", packages=find_packages())
  1. Use a virtual environment

If you are familiar with virtual environments, activate one, and skip to the next step. Usage of virtual environments are not absolutely required, but they will really help you out in the long run (when you have more than 1 project ongoing..). The most basic steps are (run in the root folder)

  • Create virtual env
    • python -m venv venv
  • Activate virtual env
    • source ./venv/bin/activate (Linux, macOS) or ./venv/Scripts/activate (Win)

To learn more about this, just Google out "python virtual env tutorial" or similar. You probably never need any other commands than creating, activating and deactivating.

Once you have made and activated a virtual environment, your console should give the name of the virtual environment in parenthesis

PS C:	mp	est_imports> python -m venv venv
PS C:	mp	est_imports> .venvScriptsactivate
(venv) PS C:	mp	est_imports>

and your folder tree should look like this**

.
├── myproject
│   ├── api
│   │   ├── api_key.py
│   │   ├── api.py
│   │   └── __init__.py
│   ├── examples
│   │   ├── example_one.py
│   │   ├── example_two.py
│   │   └── __init__.py
│   ├── LICENCE.md
│   ├── README.md
│   └── tests
│       ├── __init__.py
│       └── test_one.py
├── setup.py
└── venv
    ├── Include
    ├── Lib
    ├── pyvenv.cfg
    └── Scripts [87 entries exceeds filelimit, not opening dir]
  1. pip install your project in editable state

Install your top level package myproject using pip. The trick is to use the -e flag when doing the install. This way it is installed in an editable state, and all the edits made to the .py files will be automatically included in the installed package.

In the root directory, run

pip install -e . (note the dot, it stands for "current directory")

You can also see that it is installed by using pip freeze

(venv) PS C:	mp	est_imports> pip install -e .
Obtaining file:///C:/tmp/test_imports
Installing collected packages: myproject
  Running setup.py develop for myproject
Successfully installed myproject
(venv) PS C:	mp	est_imports> pip freeze
myproject==1.0
  1. Add myproject. into your imports

Note that you will have to add myproject. only into imports that would not work otherwise. Imports that worked without the setup.py & pip install will work still work fine. See an example below.


Test the solution

Now, let"s test the solution using api.py defined above, and test_one.py defined below.

test_one.py

from myproject.api.api import function_from_api

def test_function():
    print(function_from_api())

if __name__ == "__main__":
    test_function()

running the test

(venv) PS C:	mp	est_imports> python .myproject	ests	est_one.py
I am the return value from api.api!

* See the setuptools docs for more verbose setup.py examples.

** In reality, you could put your virtual environment anywhere on your hard disk.

Answer #10

There are several ways to post an image in Jupyter notebooks:

via HTML:

from IPython.display import Image
from IPython.core.display import HTML 
Image(url= "http://my_site.com/my_picture.jpg")

You retain the ability to use HTML tags to resize, etc...

Image(url= "http://my_site.com/my_picture.jpg", width=100, height=100)

You can also display images stored locally, either via relative or absolute path.

PATH = "/Users/reblochonMasque/Documents/Drawings/"
Image(filename = PATH + "My_picture.jpg", width=100, height=100)

if the image it wider than the display settings: thanks

use unconfined=True to disable max-width confinement of the image

from IPython.core.display import Image, display
display(Image(url="https://i.ytimg.com/vi/j22DmsZEv30/maxresdefault.jpg", width=1900, unconfined=True))

or via markdown:

  • make sure the cell is a markdown cell, and not a code cell, thanks @Ê∏∏ÂáØË∂Ö in the comments)
  • Please note that on some systems, the markdown does not allow white space in the filenames. Thanks to @CoffeeTableEspresso and @zebralamy in the comments)
    (On macos, as long as you are on a markdown cell you would do like this: ![title](../image 1.png), and not worry about the white space).

for a web image:

![Image of Yaktocat](https://octodex.github.com/images/yaktocat.png)

as shown by @cristianmtr Paying attention not to use either these quotes "" or those "" around the url.

or a local one:

![title](img/picture.png)

demonstrated by @Sebastian

Absolute Deviation and Absolute Mean Deviation Using NumPy | python: StackOverflow Questions

InsecurePlatformWarning: A true SSLContext object is not available. This prevents urllib3 from configuring SSL appropriately

Tried to perform REST GET through python requests with the following code and I got error.

Code snip:

import requests
header = {"Authorization": "Bearer..."}
url = az_base_url + az_subscription_id + "/resourcegroups/Default-Networking/resources?" + az_api_version
r = requests.get(url, headers=header)

Error:

/usr/local/lib/python2.7/dist-packages/requests/packages/urllib3/util/ssl_.py:79: 
          InsecurePlatformWarning: A true SSLContext object is not available. 
          This prevents urllib3 from configuring SSL appropriately and may cause certain SSL connections to fail. 
          For more information, see https://urllib3.readthedocs.org/en/latest/security.html#insecureplatformwarning.
  InsecurePlatformWarning

My python version is 2.7.3. I tried to install urllib3 and requests[security] as some other thread suggests, I still got the same error.

Wonder if anyone can provide some tips?

Dynamic instantiation from string name of a class in dynamically imported module?

In python, I have to instantiate certain class, knowing its name in a string, but this class "lives" in a dynamically imported module. An example follows:

loader-class script:

import sys
class loader:
  def __init__(self, module_name, class_name): # both args are strings
    try:
      __import__(module_name)
      modul = sys.modules[module_name]
      instance = modul.class_name() # obviously this doesn"t works, here is my main problem!
    except ImportError:
       # manage import error

some-dynamically-loaded-module script:

class myName:
  # etc...

I use this arrangement to make any dynamically-loaded-module to be used by the loader-class following certain predefined behaviours in the dyn-loaded-modules...

pandas loc vs. iloc vs. at vs. iat?

Recently began branching out from my safe place (R) into Python and and am a bit confused by the cell localization/selection in Pandas. I"ve read the documentation but I"m struggling to understand the practical implications of the various localization/selection options.

Is there a reason why I should ever use .loc or .iloc over at, and iat or vice versa? In what situations should I use which method?


Note: future readers be aware that this question is old and was written before pandas v0.20 when there used to exist a function called .ix. This method was later split into two - loc and iloc - to make the explicit distinction between positional and label based indexing. Please beware that ix was discontinued due to inconsistent behavior and being hard to grok, and no longer exists in current versions of pandas (>= 1.0).

How to get all of the immediate subdirectories in Python

I"m trying to write a simple Python script that will copy a index.tpl to index.html in all of the subdirectories (with a few exceptions).

I"m getting bogged down by trying to get the list of subdirectories.

Standard deviation of a list

I want to find mean and standard deviation of 1st, 2nd,... digits of several (Z) lists. For example, I have

A_rank=[0.8,0.4,1.2,3.7,2.6,5.8]
B_rank=[0.1,2.8,3.7,2.6,5,3.4]
C_Rank=[1.2,3.4,0.5,0.1,2.5,6.1]
# etc (up to Z_rank )...

Now I want to take the mean and std of *_Rank[0], the mean and std of *_Rank[1], etc.
(ie: mean and std of the 1st digit from all the (A..Z)_rank lists;
the mean and std of the 2nd digit from all the (A..Z)_rank lists;
the mean and std of the 3rd digit...; etc).

sort eigenvalues and associated eigenvectors after using numpy.linalg.eig in python

I"m using numpy.linalg.eig to obtain a list of eigenvalues and eigenvectors:

A = someMatrixArray
from numpy.linalg import eig as eigenValuesAndVectors

solution = eigenValuesAndVectors(A)

eigenValues = solution[0]
eigenVectors = solution[1]

I would like to sort my eigenvalues (e.g. from lowest to highest), in a way I know what is the associated eigenvector after the sorting.

I"m not finding any way of doing that with python functions. Is there any simple way or do I have to code my sort version?

Associativity of "in" in Python?

I"m making a Python parser, and this is really confusing me:

>>> 1 in [] in "a"
False

>>> (1 in []) in "a"
TypeError: "in <string>" requires string as left operand, not bool

>>> 1 in ([] in "a")
TypeError: "in <string>" requires string as left operand, not list

How exactly does in work in Python, with regards to associativity, etc.?

Why do no two of these expressions behave the same way?

How to calculate probability in a normal distribution given mean & standard deviation?

How to calculate probability in normal distribution given mean, std in Python? I can always explicitly code my own function according to the definition like the OP in this question did: Calculating Probability of a Random Variable in a Distribution in Python

Just wondering if there is a library function call will allow you to do this. In my imagine it would like this:

nd = NormalDistribution(mu=100, std=12)
p = nd.prob(98)

There is a similar question in Perl: How can I compute the probability at a point given a normal distribution in Perl?. But I didn"t see one in Python.

Numpy has a random.normal function, but it"s like sampling, not exactly what I want.

Answer #1

The Python 3 range() object doesn"t produce numbers immediately; it is a smart sequence object that produces numbers on demand. All it contains is your start, stop and step values, then as you iterate over the object the next integer is calculated each iteration.

The object also implements the object.__contains__ hook, and calculates if your number is part of its range. Calculating is a (near) constant time operation *. There is never a need to scan through all possible integers in the range.

From the range() object documentation:

The advantage of the range type over a regular list or tuple is that a range object will always take the same (small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and step values, calculating individual items and subranges as needed).

So at a minimum, your range() object would do:

class my_range:
    def __init__(self, start, stop=None, step=1, /):
        if stop is None:
            start, stop = 0, start
        self.start, self.stop, self.step = start, stop, step
        if step < 0:
            lo, hi, step = stop, start, -step
        else:
            lo, hi = start, stop
        self.length = 0 if lo > hi else ((hi - lo - 1) // step) + 1

    def __iter__(self):
        current = self.start
        if self.step < 0:
            while current > self.stop:
                yield current
                current += self.step
        else:
            while current < self.stop:
                yield current
                current += self.step

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        if i < 0:
            i += self.length
        if 0 <= i < self.length:
            return self.start + i * self.step
        raise IndexError("my_range object index out of range")

    def __contains__(self, num):
        if self.step < 0:
            if not (self.stop < num <= self.start):
                return False
        else:
            if not (self.start <= num < self.stop):
                return False
        return (num - self.start) % self.step == 0

This is still missing several things that a real range() supports (such as the .index() or .count() methods, hashing, equality testing, or slicing), but should give you an idea.

I also simplified the __contains__ implementation to only focus on integer tests; if you give a real range() object a non-integer value (including subclasses of int), a slow scan is initiated to see if there is a match, just as if you use a containment test against a list of all the contained values. This was done to continue to support other numeric types that just happen to support equality testing with integers but are not expected to support integer arithmetic as well. See the original Python issue that implemented the containment test.


* Near constant time because Python integers are unbounded and so math operations also grow in time as N grows, making this a O(log N) operation. Since it’s all executed in optimised C code and Python stores integer values in 30-bit chunks, you’d run out of memory before you saw any performance impact due to the size of the integers involved here.

Answer #2

You have four main options for converting types in pandas:

  1. to_numeric() - provides functionality to safely convert non-numeric types (e.g. strings) to a suitable numeric type. (See also to_datetime() and to_timedelta().)

  2. astype() - convert (almost) any type to (almost) any other type (even if it"s not necessarily sensible to do so). Also allows you to convert to categorial types (very useful).

  3. infer_objects() - a utility method to convert object columns holding Python objects to a pandas type if possible.

  4. convert_dtypes() - convert DataFrame columns to the "best possible" dtype that supports pd.NA (pandas" object to indicate a missing value).

Read on for more detailed explanations and usage of each of these methods.


1. to_numeric()

The best way to convert one or more columns of a DataFrame to numeric values is to use pandas.to_numeric().

This function will try to change non-numeric objects (such as strings) into integers or floating point numbers as appropriate.

Basic usage

The input to to_numeric() is a Series or a single column of a DataFrame.

>>> s = pd.Series(["8", 6, "7.5", 3, "0.9"]) # mixed string and numeric values
>>> s
0      8
1      6
2    7.5
3      3
4    0.9
dtype: object

>>> pd.to_numeric(s) # convert everything to float values
0    8.0
1    6.0
2    7.5
3    3.0
4    0.9
dtype: float64

As you can see, a new Series is returned. Remember to assign this output to a variable or column name to continue using it:

# convert Series
my_series = pd.to_numeric(my_series)

# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])

You can also use it to convert multiple columns of a DataFrame via the apply() method:

# convert all columns of DataFrame
df = df.apply(pd.to_numeric) # convert all columns of DataFrame

# convert just columns "a" and "b"
df[["a", "b"]] = df[["a", "b"]].apply(pd.to_numeric)

As long as your values can all be converted, that"s probably all you need.

Error handling

But what if some values can"t be converted to a numeric type?

to_numeric() also takes an errors keyword argument that allows you to force non-numeric values to be NaN, or simply ignore columns containing these values.

Here"s an example using a Series of strings s which has the object dtype:

>>> s = pd.Series(["1", "2", "4.7", "pandas", "10"])
>>> s
0         1
1         2
2       4.7
3    pandas
4        10
dtype: object

The default behaviour is to raise if it can"t convert a value. In this case, it can"t cope with the string "pandas":

>>> pd.to_numeric(s) # or pd.to_numeric(s, errors="raise")
ValueError: Unable to parse string

Rather than fail, we might want "pandas" to be considered a missing/bad numeric value. We can coerce invalid values to NaN as follows using the errors keyword argument:

>>> pd.to_numeric(s, errors="coerce")
0     1.0
1     2.0
2     4.7
3     NaN
4    10.0
dtype: float64

The third option for errors is just to ignore the operation if an invalid value is encountered:

>>> pd.to_numeric(s, errors="ignore")
# the original Series is returned untouched

This last option is particularly useful when you want to convert your entire DataFrame, but don"t not know which of our columns can be converted reliably to a numeric type. In that case just write:

df.apply(pd.to_numeric, errors="ignore")

The function will be applied to each column of the DataFrame. Columns that can be converted to a numeric type will be converted, while columns that cannot (e.g. they contain non-digit strings or dates) will be left alone.

Downcasting

By default, conversion with to_numeric() will give you either a int64 or float64 dtype (or whatever integer width is native to your platform).

That"s usually what you want, but what if you wanted to save some memory and use a more compact dtype, like float32, or int8?

to_numeric() gives you the option to downcast to either "integer", "signed", "unsigned", "float". Here"s an example for a simple series s of integer type:

>>> s = pd.Series([1, 2, -7])
>>> s
0    1
1    2
2   -7
dtype: int64

Downcasting to "integer" uses the smallest possible integer that can hold the values:

>>> pd.to_numeric(s, downcast="integer")
0    1
1    2
2   -7
dtype: int8

Downcasting to "float" similarly picks a smaller than normal floating type:

>>> pd.to_numeric(s, downcast="float")
0    1.0
1    2.0
2   -7.0
dtype: float32

2. astype()

The astype() method enables you to be explicit about the dtype you want your DataFrame or Series to have. It"s very versatile in that you can try and go from one type to the any other.

Basic usage

Just pick a type: you can use a NumPy dtype (e.g. np.int16), some Python types (e.g. bool), or pandas-specific types (like the categorical dtype).

Call the method on the object you want to convert and astype() will try and convert it for you:

# convert all DataFrame columns to the int64 dtype
df = df.astype(int)

# convert column "a" to int64 dtype and "b" to complex type
df = df.astype({"a": int, "b": complex})

# convert Series to float16 type
s = s.astype(np.float16)

# convert Series to Python strings
s = s.astype(str)

# convert Series to categorical type - see docs for more details
s = s.astype("category")

Notice I said "try" - if astype() does not know how to convert a value in the Series or DataFrame, it will raise an error. For example if you have a NaN or inf value you"ll get an error trying to convert it to an integer.

As of pandas 0.20.0, this error can be suppressed by passing errors="ignore". Your original object will be return untouched.

Be careful

astype() is powerful, but it will sometimes convert values "incorrectly". For example:

>>> s = pd.Series([1, 2, -7])
>>> s
0    1
1    2
2   -7
dtype: int64

These are small integers, so how about converting to an unsigned 8-bit type to save memory?

>>> s.astype(np.uint8)
0      1
1      2
2    249
dtype: uint8

The conversion worked, but the -7 was wrapped round to become 249 (i.e. 28 - 7)!

Trying to downcast using pd.to_numeric(s, downcast="unsigned") instead could help prevent this error.


3. infer_objects()

Version 0.21.0 of pandas introduced the method infer_objects() for converting columns of a DataFrame that have an object datatype to a more specific type (soft conversions).

For example, here"s a DataFrame with two columns of object type. One holds actual integers and the other holds strings representing integers:

>>> df = pd.DataFrame({"a": [7, 1, 5], "b": ["3","2","1"]}, dtype="object")
>>> df.dtypes
a    object
b    object
dtype: object

Using infer_objects(), you can change the type of column "a" to int64:

>>> df = df.infer_objects()
>>> df.dtypes
a     int64
b    object
dtype: object

Column "b" has been left alone since its values were strings, not integers. If you wanted to try and force the conversion of both columns to an integer type, you could use df.astype(int) instead.


4. convert_dtypes()

Version 1.0 and above includes a method convert_dtypes() to convert Series and DataFrame columns to the best possible dtype that supports the pd.NA missing value.

Here "best possible" means the type most suited to hold the values. For example, this a pandas integer type if all of the values are integers (or missing values): an object column of Python integer objects is converted to Int64, a column of NumPy int32 values will become the pandas dtype Int32.

With our object DataFrame df, we get the following result:

>>> df.convert_dtypes().dtypes                                             
a     Int64
b    string
dtype: object

Since column "a" held integer values, it was converted to the Int64 type (which is capable of holding missing values, unlike int64).

Column "b" contained string objects, so was changed to pandas" string dtype.

By default, this method will infer the type from object values in each column. We can change this by passing infer_objects=False:

>>> df.convert_dtypes(infer_objects=False).dtypes                          
a    object
b    string
dtype: object

Now column "a" remained an object column: pandas knows it can be described as an "integer" column (internally it ran infer_dtype) but didn"t infer exactly what dtype of integer it should have so did not convert it. Column "b" was again converted to "string" dtype as it was recognised as holding "string" values.

Answer #3

Since this question was asked in 2010, there has been real simplification in how to do simple multithreading with Python with map and pool.

The code below comes from an article/blog post that you should definitely check out (no affiliation) - Parallelism in one line: A Better Model for Day to Day Threading Tasks. I"ll summarize below - it ends up being just a few lines of code:

from multiprocessing.dummy import Pool as ThreadPool
pool = ThreadPool(4)
results = pool.map(my_function, my_array)

Which is the multithreaded version of:

results = []
for item in my_array:
    results.append(my_function(item))

Description

Map is a cool little function, and the key to easily injecting parallelism into your Python code. For those unfamiliar, map is something lifted from functional languages like Lisp. It is a function which maps another function over a sequence.

Map handles the iteration over the sequence for us, applies the function, and stores all of the results in a handy list at the end.

Enter image description here


Implementation

Parallel versions of the map function are provided by two libraries:multiprocessing, and also its little known, but equally fantastic step child:multiprocessing.dummy.

multiprocessing.dummy is exactly the same as multiprocessing module, but uses threads instead (an important distinction - use multiple processes for CPU-intensive tasks; threads for (and during) I/O):

multiprocessing.dummy replicates the API of multiprocessing, but is no more than a wrapper around the threading module.

import urllib2
from multiprocessing.dummy import Pool as ThreadPool

urls = [
  "http://www.python.org",
  "http://www.python.org/about/",
  "http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html",
  "http://www.python.org/doc/",
  "http://www.python.org/download/",
  "http://www.python.org/getit/",
  "http://www.python.org/community/",
  "https://wiki.python.org/moin/",
]

# Make the Pool of workers
pool = ThreadPool(4)

# Open the URLs in their own threads
# and return the results
results = pool.map(urllib2.urlopen, urls)

# Close the pool and wait for the work to finish
pool.close()
pool.join()

And the timing results:

Single thread:   14.4 seconds
       4 Pool:   3.1 seconds
       8 Pool:   1.4 seconds
      13 Pool:   1.3 seconds

Passing multiple arguments (works like this only in Python 3.3 and later):

To pass multiple arrays:

results = pool.starmap(function, zip(list_a, list_b))

Or to pass a constant and an array:

results = pool.starmap(function, zip(itertools.repeat(constant), list_a))

If you are using an earlier version of Python, you can pass multiple arguments via this workaround).

(Thanks to user136036 for the helpful comment.)

Answer #4

How to iterate over rows in a DataFrame in Pandas?

Answer: DON"T*!

Iteration in Pandas is an anti-pattern and is something you should only do when you have exhausted every other option. You should not use any function with "iter" in its name for more than a few thousand rows or you will have to get used to a lot of waiting.

Do you want to print a DataFrame? Use DataFrame.to_string().

Do you want to compute something? In that case, search for methods in this order (list modified from here):

  1. Vectorization
  2. Cython routines
  3. List Comprehensions (vanilla for loop)
  4. DataFrame.apply(): i)  Reductions that can be performed in Cython, ii) Iteration in Python space
  5. DataFrame.itertuples() and iteritems()
  6. DataFrame.iterrows()

iterrows and itertuples (both receiving many votes in answers to this question) should be used in very rare circumstances, such as generating row objects/nametuples for sequential processing, which is really the only thing these functions are useful for.

Appeal to Authority

The documentation page on iteration has a huge red warning box that says:

Iterating through pandas objects is generally slow. In many cases, iterating manually over the rows is not needed [...].

* It"s actually a little more complicated than "don"t". df.iterrows() is the correct answer to this question, but "vectorize your ops" is the better one. I will concede that there are circumstances where iteration cannot be avoided (for example, some operations where the result depends on the value computed for the previous row). However, it takes some familiarity with the library to know when. If you"re not sure whether you need an iterative solution, you probably don"t. PS: To know more about my rationale for writing this answer, skip to the very bottom.


Faster than Looping: Vectorization, Cython

A good number of basic operations and computations are "vectorised" by pandas (either through NumPy, or through Cythonized functions). This includes arithmetic, comparisons, (most) reductions, reshaping (such as pivoting), joins, and groupby operations. Look through the documentation on Essential Basic Functionality to find a suitable vectorised method for your problem.

If none exists, feel free to write your own using custom Cython extensions.


Next Best Thing: List Comprehensions*

List comprehensions should be your next port of call if 1) there is no vectorized solution available, 2) performance is important, but not important enough to go through the hassle of cythonizing your code, and 3) you"re trying to perform elementwise transformation on your code. There is a good amount of evidence to suggest that list comprehensions are sufficiently fast (and even sometimes faster) for many common Pandas tasks.

The formula is simple,

# Iterating over one column - `f` is some function that processes your data
result = [f(x) for x in df["col"]]
# Iterating over two columns, use `zip`
result = [f(x, y) for x, y in zip(df["col1"], df["col2"])]
# Iterating over multiple columns - same data type
result = [f(row[0], ..., row[n]) for row in df[["col1", ...,"coln"]].to_numpy()]
# Iterating over multiple columns - differing data type
result = [f(row[0], ..., row[n]) for row in zip(df["col1"], ..., df["coln"])]

If you can encapsulate your business logic into a function, you can use a list comprehension that calls it. You can make arbitrarily complex things work through the simplicity and speed of raw Python code.

Caveats

List comprehensions assume that your data is easy to work with - what that means is your data types are consistent and you don"t have NaNs, but this cannot always be guaranteed.

  1. The first one is more obvious, but when dealing with NaNs, prefer in-built pandas methods if they exist (because they have much better corner-case handling logic), or ensure your business logic includes appropriate NaN handling logic.
  2. When dealing with mixed data types you should iterate over zip(df["A"], df["B"], ...) instead of df[["A", "B"]].to_numpy() as the latter implicitly upcasts data to the most common type. As an example if A is numeric and B is string, to_numpy() will cast the entire array to string, which may not be what you want. Fortunately zipping your columns together is the most straightforward workaround to this.

*Your mileage may vary for the reasons outlined in the Caveats section above.


An Obvious Example

Let"s demonstrate the difference with a simple example of adding two pandas columns A + B. This is a vectorizable operaton, so it will be easy to contrast the performance of the methods discussed above.

Benchmarking code, for your reference. The line at the bottom measures a function written in numpandas, a style of Pandas that mixes heavily with NumPy to squeeze out maximum performance. Writing numpandas code should be avoided unless you know what you"re doing. Stick to the API where you can (i.e., prefer vec over vec_numpy).

I should mention, however, that it isn"t always this cut and dry. Sometimes the answer to "what is the best method for an operation" is "it depends on your data". My advice is to test out different approaches on your data before settling on one.


Further Reading

* Pandas string methods are "vectorized" in the sense that they are specified on the series but operate on each element. The underlying mechanisms are still iterative, because string operations are inherently hard to vectorize.


Why I Wrote this Answer

A common trend I notice from new users is to ask questions of the form "How can I iterate over my df to do X?". Showing code that calls iterrows() while doing something inside a for loop. Here is why. A new user to the library who has not been introduced to the concept of vectorization will likely envision the code that solves their problem as iterating over their data to do something. Not knowing how to iterate over a DataFrame, the first thing they do is Google it and end up here, at this question. They then see the accepted answer telling them how to, and they close their eyes and run this code without ever first questioning if iteration is not the right thing to do.

The aim of this answer is to help new users understand that iteration is not necessarily the solution to every problem, and that better, faster and more idiomatic solutions could exist, and that it is worth investing time in exploring them. I"m not trying to start a war of iteration vs. vectorization, but I want new users to be informed when developing solutions to their problems with this library.

Answer #5

In Python, what is the purpose of __slots__ and what are the cases one should avoid this?

TLDR:

The special attribute __slots__ allows you to explicitly state which instance attributes you expect your object instances to have, with the expected results:

  1. faster attribute access.
  2. space savings in memory.

The space savings is from

  1. Storing value references in slots instead of __dict__.
  2. Denying __dict__ and __weakref__ creation if parent classes deny them and you declare __slots__.

Quick Caveats

Small caveat, you should only declare a particular slot one time in an inheritance tree. For example:

class Base:
    __slots__ = "foo", "bar"

class Right(Base):
    __slots__ = "baz", 

class Wrong(Base):
    __slots__ = "foo", "bar", "baz"        # redundant foo and bar

Python doesn"t object when you get this wrong (it probably should), problems might not otherwise manifest, but your objects will take up more space than they otherwise should. Python 3.8:

>>> from sys import getsizeof
>>> getsizeof(Right()), getsizeof(Wrong())
(56, 72)

This is because the Base"s slot descriptor has a slot separate from the Wrong"s. This shouldn"t usually come up, but it could:

>>> w = Wrong()
>>> w.foo = "foo"
>>> Base.foo.__get__(w)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: foo
>>> Wrong.foo.__get__(w)
"foo"

The biggest caveat is for multiple inheritance - multiple "parent classes with nonempty slots" cannot be combined.

To accommodate this restriction, follow best practices: Factor out all but one or all parents" abstraction which their concrete class respectively and your new concrete class collectively will inherit from - giving the abstraction(s) empty slots (just like abstract base classes in the standard library).

See section on multiple inheritance below for an example.

Requirements:

  • To have attributes named in __slots__ to actually be stored in slots instead of a __dict__, a class must inherit from object (automatic in Python 3, but must be explicit in Python 2).

  • To prevent the creation of a __dict__, you must inherit from object and all classes in the inheritance must declare __slots__ and none of them can have a "__dict__" entry.

There are a lot of details if you wish to keep reading.

Why use __slots__: Faster attribute access.

The creator of Python, Guido van Rossum, states that he actually created __slots__ for faster attribute access.

It is trivial to demonstrate measurably significant faster access:

import timeit

class Foo(object): __slots__ = "foo",

class Bar(object): pass

slotted = Foo()
not_slotted = Bar()

def get_set_delete_fn(obj):
    def get_set_delete():
        obj.foo = "foo"
        obj.foo
        del obj.foo
    return get_set_delete

and

>>> min(timeit.repeat(get_set_delete_fn(slotted)))
0.2846834529991611
>>> min(timeit.repeat(get_set_delete_fn(not_slotted)))
0.3664822799983085

The slotted access is almost 30% faster in Python 3.5 on Ubuntu.

>>> 0.3664822799983085 / 0.2846834529991611
1.2873325658284342

In Python 2 on Windows I have measured it about 15% faster.

Why use __slots__: Memory Savings

Another purpose of __slots__ is to reduce the space in memory that each object instance takes up.

My own contribution to the documentation clearly states the reasons behind this:

The space saved over using __dict__ can be significant.

SQLAlchemy attributes a lot of memory savings to __slots__.

To verify this, using the Anaconda distribution of Python 2.7 on Ubuntu Linux, with guppy.hpy (aka heapy) and sys.getsizeof, the size of a class instance without __slots__ declared, and nothing else, is 64 bytes. That does not include the __dict__. Thank you Python for lazy evaluation again, the __dict__ is apparently not called into existence until it is referenced, but classes without data are usually useless. When called into existence, the __dict__ attribute is a minimum of 280 bytes additionally.

In contrast, a class instance with __slots__ declared to be () (no data) is only 16 bytes, and 56 total bytes with one item in slots, 64 with two.

For 64 bit Python, I illustrate the memory consumption in bytes in Python 2.7 and 3.6, for __slots__ and __dict__ (no slots defined) for each point where the dict grows in 3.6 (except for 0, 1, and 2 attributes):

       Python 2.7             Python 3.6
attrs  __slots__  __dict__*   __slots__  __dict__* | *(no slots defined)
none   16         56 + 272†   16         56 + 112† | †if __dict__ referenced
one    48         56 + 272    48         56 + 112
two    56         56 + 272    56         56 + 112
six    88         56 + 1040   88         56 + 152
11     128        56 + 1040   128        56 + 240
22     216        56 + 3344   216        56 + 408     
43     384        56 + 3344   384        56 + 752

So, in spite of smaller dicts in Python 3, we see how nicely __slots__ scale for instances to save us memory, and that is a major reason you would want to use __slots__.

Just for completeness of my notes, note that there is a one-time cost per slot in the class"s namespace of 64 bytes in Python 2, and 72 bytes in Python 3, because slots use data descriptors like properties, called "members".

>>> Foo.foo
<member "foo" of "Foo" objects>
>>> type(Foo.foo)
<class "member_descriptor">
>>> getsizeof(Foo.foo)
72

Demonstration of __slots__:

To deny the creation of a __dict__, you must subclass object. Everything subclasses object in Python 3, but in Python 2 you had to be explicit:

class Base(object): 
    __slots__ = ()

now:

>>> b = Base()
>>> b.a = "a"
Traceback (most recent call last):
  File "<pyshell#38>", line 1, in <module>
    b.a = "a"
AttributeError: "Base" object has no attribute "a"

Or subclass another class that defines __slots__

class Child(Base):
    __slots__ = ("a",)

and now:

c = Child()
c.a = "a"

but:

>>> c.b = "b"
Traceback (most recent call last):
  File "<pyshell#42>", line 1, in <module>
    c.b = "b"
AttributeError: "Child" object has no attribute "b"

To allow __dict__ creation while subclassing slotted objects, just add "__dict__" to the __slots__ (note that slots are ordered, and you shouldn"t repeat slots that are already in parent classes):

class SlottedWithDict(Child): 
    __slots__ = ("__dict__", "b")

swd = SlottedWithDict()
swd.a = "a"
swd.b = "b"
swd.c = "c"

and

>>> swd.__dict__
{"c": "c"}

Or you don"t even need to declare __slots__ in your subclass, and you will still use slots from the parents, but not restrict the creation of a __dict__:

class NoSlots(Child): pass
ns = NoSlots()
ns.a = "a"
ns.b = "b"

And:

>>> ns.__dict__
{"b": "b"}

However, __slots__ may cause problems for multiple inheritance:

class BaseA(object): 
    __slots__ = ("a",)

class BaseB(object): 
    __slots__ = ("b",)

Because creating a child class from parents with both non-empty slots fails:

>>> class Child(BaseA, BaseB): __slots__ = ()
Traceback (most recent call last):
  File "<pyshell#68>", line 1, in <module>
    class Child(BaseA, BaseB): __slots__ = ()
TypeError: Error when calling the metaclass bases
    multiple bases have instance lay-out conflict

If you run into this problem, You could just remove __slots__ from the parents, or if you have control of the parents, give them empty slots, or refactor to abstractions:

from abc import ABC

class AbstractA(ABC):
    __slots__ = ()

class BaseA(AbstractA): 
    __slots__ = ("a",)

class AbstractB(ABC):
    __slots__ = ()

class BaseB(AbstractB): 
    __slots__ = ("b",)

class Child(AbstractA, AbstractB): 
    __slots__ = ("a", "b")

c = Child() # no problem!

Add "__dict__" to __slots__ to get dynamic assignment:

class Foo(object):
    __slots__ = "bar", "baz", "__dict__"

and now:

>>> foo = Foo()
>>> foo.boink = "boink"

So with "__dict__" in slots we lose some of the size benefits with the upside of having dynamic assignment and still having slots for the names we do expect.

When you inherit from an object that isn"t slotted, you get the same sort of semantics when you use __slots__ - names that are in __slots__ point to slotted values, while any other values are put in the instance"s __dict__.

Avoiding __slots__ because you want to be able to add attributes on the fly is actually not a good reason - just add "__dict__" to your __slots__ if this is required.

You can similarly add __weakref__ to __slots__ explicitly if you need that feature.

Set to empty tuple when subclassing a namedtuple:

The namedtuple builtin make immutable instances that are very lightweight (essentially, the size of tuples) but to get the benefits, you need to do it yourself if you subclass them:

from collections import namedtuple
class MyNT(namedtuple("MyNT", "bar baz")):
    """MyNT is an immutable and lightweight object"""
    __slots__ = ()

usage:

>>> nt = MyNT("bar", "baz")
>>> nt.bar
"bar"
>>> nt.baz
"baz"

And trying to assign an unexpected attribute raises an AttributeError because we have prevented the creation of __dict__:

>>> nt.quux = "quux"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: "MyNT" object has no attribute "quux"

You can allow __dict__ creation by leaving off __slots__ = (), but you can"t use non-empty __slots__ with subtypes of tuple.

Biggest Caveat: Multiple inheritance

Even when non-empty slots are the same for multiple parents, they cannot be used together:

class Foo(object): 
    __slots__ = "foo", "bar"
class Bar(object):
    __slots__ = "foo", "bar" # alas, would work if empty, i.e. ()

>>> class Baz(Foo, Bar): pass
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Error when calling the metaclass bases
    multiple bases have instance lay-out conflict

Using an empty __slots__ in the parent seems to provide the most flexibility, allowing the child to choose to prevent or allow (by adding "__dict__" to get dynamic assignment, see section above) the creation of a __dict__:

class Foo(object): __slots__ = ()
class Bar(object): __slots__ = ()
class Baz(Foo, Bar): __slots__ = ("foo", "bar")
b = Baz()
b.foo, b.bar = "foo", "bar"

You don"t have to have slots - so if you add them, and remove them later, it shouldn"t cause any problems.

Going out on a limb here: If you"re composing mixins or using abstract base classes, which aren"t intended to be instantiated, an empty __slots__ in those parents seems to be the best way to go in terms of flexibility for subclassers.

To demonstrate, first, let"s create a class with code we"d like to use under multiple inheritance

class AbstractBase:
    __slots__ = ()
    def __init__(self, a, b):
        self.a = a
        self.b = b
    def __repr__(self):
        return f"{type(self).__name__}({repr(self.a)}, {repr(self.b)})"

We could use the above directly by inheriting and declaring the expected slots:

class Foo(AbstractBase):
    __slots__ = "a", "b"

But we don"t care about that, that"s trivial single inheritance, we need another class we might also inherit from, maybe with a noisy attribute:

class AbstractBaseC:
    __slots__ = ()
    @property
    def c(self):
        print("getting c!")
        return self._c
    @c.setter
    def c(self, arg):
        print("setting c!")
        self._c = arg

Now if both bases had nonempty slots, we couldn"t do the below. (In fact, if we wanted, we could have given AbstractBase nonempty slots a and b, and left them out of the below declaration - leaving them in would be wrong):

class Concretion(AbstractBase, AbstractBaseC):
    __slots__ = "a b _c".split()

And now we have functionality from both via multiple inheritance, and can still deny __dict__ and __weakref__ instantiation:

>>> c = Concretion("a", "b")
>>> c.c = c
setting c!
>>> c.c
getting c!
Concretion("a", "b")
>>> c.d = "d"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: "Concretion" object has no attribute "d"

Other cases to avoid slots:

  • Avoid them when you want to perform __class__ assignment with another class that doesn"t have them (and you can"t add them) unless the slot layouts are identical. (I am very interested in learning who is doing this and why.)
  • Avoid them if you want to subclass variable length builtins like long, tuple, or str, and you want to add attributes to them.
  • Avoid them if you insist on providing default values via class attributes for instance variables.

You may be able to tease out further caveats from the rest of the __slots__ documentation (the 3.7 dev docs are the most current), which I have made significant recent contributions to.

Critiques of other answers

The current top answers cite outdated information and are quite hand-wavy and miss the mark in some important ways.

Do not "only use __slots__ when instantiating lots of objects"

I quote:

"You would want to use __slots__ if you are going to instantiate a lot (hundreds, thousands) of objects of the same class."

Abstract Base Classes, for example, from the collections module, are not instantiated, yet __slots__ are declared for them.

Why?

If a user wishes to deny __dict__ or __weakref__ creation, those things must not be available in the parent classes.

__slots__ contributes to reusability when creating interfaces or mixins.

It is true that many Python users aren"t writing for reusability, but when you are, having the option to deny unnecessary space usage is valuable.

__slots__ doesn"t break pickling

When pickling a slotted object, you may find it complains with a misleading TypeError:

>>> pickle.loads(pickle.dumps(f))
TypeError: a class that defines __slots__ without defining __getstate__ cannot be pickled

This is actually incorrect. This message comes from the oldest protocol, which is the default. You can select the latest protocol with the -1 argument. In Python 2.7 this would be 2 (which was introduced in 2.3), and in 3.6 it is 4.

>>> pickle.loads(pickle.dumps(f, -1))
<__main__.Foo object at 0x1129C770>

in Python 2.7:

>>> pickle.loads(pickle.dumps(f, 2))
<__main__.Foo object at 0x1129C770>

in Python 3.6

>>> pickle.loads(pickle.dumps(f, 4))
<__main__.Foo object at 0x1129C770>

So I would keep this in mind, as it is a solved problem.

Critique of the (until Oct 2, 2016) accepted answer

The first paragraph is half short explanation, half predictive. Here"s the only part that actually answers the question

The proper use of __slots__ is to save space in objects. Instead of having a dynamic dict that allows adding attributes to objects at anytime, there is a static structure which does not allow additions after creation. This saves the overhead of one dict for every object that uses slots

The second half is wishful thinking, and off the mark:

While this is sometimes a useful optimization, it would be completely unnecessary if the Python interpreter was dynamic enough so that it would only require the dict when there actually were additions to the object.

Python actually does something similar to this, only creating the __dict__ when it is accessed, but creating lots of objects with no data is fairly ridiculous.

The second paragraph oversimplifies and misses actual reasons to avoid __slots__. The below is not a real reason to avoid slots (for actual reasons, see the rest of my answer above.):

They change the behavior of the objects that have slots in a way that can be abused by control freaks and static typing weenies.

It then goes on to discuss other ways of accomplishing that perverse goal with Python, not discussing anything to do with __slots__.

The third paragraph is more wishful thinking. Together it is mostly off-the-mark content that the answerer didn"t even author and contributes to ammunition for critics of the site.

Memory usage evidence

Create some normal objects and slotted objects:

>>> class Foo(object): pass
>>> class Bar(object): __slots__ = ()

Instantiate a million of them:

>>> foos = [Foo() for f in xrange(1000000)]
>>> bars = [Bar() for b in xrange(1000000)]

Inspect with guppy.hpy().heap():

>>> guppy.hpy().heap()
Partition of a set of 2028259 objects. Total size = 99763360 bytes.
 Index  Count   %     Size   % Cumulative  % Kind (class / dict of class)
     0 1000000  49 64000000  64  64000000  64 __main__.Foo
     1     169   0 16281480  16  80281480  80 list
     2 1000000  49 16000000  16  96281480  97 __main__.Bar
     3   12284   1   987472   1  97268952  97 str
...

Access the regular objects and their __dict__ and inspect again:

>>> for f in foos:
...     f.__dict__
>>> guppy.hpy().heap()
Partition of a set of 3028258 objects. Total size = 379763480 bytes.
 Index  Count   %      Size    % Cumulative  % Kind (class / dict of class)
     0 1000000  33 280000000  74 280000000  74 dict of __main__.Foo
     1 1000000  33  64000000  17 344000000  91 __main__.Foo
     2     169   0  16281480   4 360281480  95 list
     3 1000000  33  16000000   4 376281480  99 __main__.Bar
     4   12284   0    987472   0 377268952  99 str
...

This is consistent with the history of Python, from Unifying types and classes in Python 2.2

If you subclass a built-in type, extra space is automatically added to the instances to accomodate __dict__ and __weakrefs__. (The __dict__ is not initialized until you use it though, so you shouldn"t worry about the space occupied by an empty dictionary for each instance you create.) If you don"t need this extra space, you can add the phrase "__slots__ = []" to your class.

Answer #6

os.listdir() - list in the current directory

With listdir in os module you get the files and the folders in the current dir

 import os
 arr = os.listdir()
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

Looking in a directory

arr = os.listdir("c:\files")

glob from glob

with glob you can specify a type of file to list like this

import glob

txtfiles = []
for file in glob.glob("*.txt"):
    txtfiles.append(file)

glob in a list comprehension

mylist = [f for f in glob.glob("*.txt")]

get the full path of only files in the current directory

import os
from os import listdir
from os.path import isfile, join

cwd = os.getcwd()
onlyfiles = [os.path.join(cwd, f) for f in os.listdir(cwd) if 
os.path.isfile(os.path.join(cwd, f))]
print(onlyfiles) 

["G:\getfilesname\getfilesname.py", "G:\getfilesname\example.txt"]

Getting the full path name with os.path.abspath

You get the full path in return

 import os
 files_path = [os.path.abspath(x) for x in os.listdir()]
 print(files_path)
 
 ["F:\documentiapplications.txt", "F:\documenticollections.txt"]

Walk: going through sub directories

os.walk returns the root, the directories list and the files list, that is why I unpacked them in r, d, f in the for loop; it, then, looks for other files and directories in the subfolders of the root and so on until there are no subfolders.

import os

# Getting the current work directory (cwd)
thisdir = os.getcwd()

# r=root, d=directories, f = files
for r, d, f in os.walk(thisdir):
    for file in f:
        if file.endswith(".docx"):
            print(os.path.join(r, file))

os.listdir(): get files in the current directory (Python 2)

In Python 2, if you want the list of the files in the current directory, you have to give the argument as "." or os.getcwd() in the os.listdir method.

 import os
 arr = os.listdir(".")
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

To go up in the directory tree

# Method 1
x = os.listdir("..")

# Method 2
x= os.listdir("/")

Get files: os.listdir() in a particular directory (Python 2 and 3)

 import os
 arr = os.listdir("F:\python")
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

Get files of a particular subdirectory with os.listdir()

import os

x = os.listdir("./content")

os.walk(".") - current directory

 import os
 arr = next(os.walk("."))[2]
 print(arr)
 
 >>> ["5bs_Turismo1.pdf", "5bs_Turismo1.pptx", "esperienza.txt"]

next(os.walk(".")) and os.path.join("dir", "file")

 import os
 arr = []
 for d,r,f in next(os.walk("F:\_python")):
     for file in f:
         arr.append(os.path.join(r,file))

 for f in arr:
     print(files)

>>> F:\_python\dict_class.py
>>> F:\_python\programmi.txt

next(os.walk("F:\") - get the full path - list comprehension

 [os.path.join(r,file) for r,d,f in next(os.walk("F:\_python")) for file in f]
 
 >>> ["F:\_python\dict_class.py", "F:\_python\programmi.txt"]

os.walk - get full path - all files in sub dirs**

x = [os.path.join(r,file) for r,d,f in os.walk("F:\_python") for file in f]
print(x)

>>> ["F:\_python\dict.py", "F:\_python\progr.txt", "F:\_python\readl.py"]

os.listdir() - get only txt files

 arr_txt = [x for x in os.listdir() if x.endswith(".txt")]
 print(arr_txt)
 
 >>> ["work.txt", "3ebooks.txt"]

Using glob to get the full path of the files

If I should need the absolute path of the files:

from path import path
from glob import glob
x = [path(f).abspath() for f in glob("F:\*.txt")]
for f in x:
    print(f)

>>> F:acquistionline.txt
>>> F:acquisti_2018.txt
>>> F:ootstrap_jquery_ecc.txt

Using os.path.isfile to avoid directories in the list

import os.path
listOfFiles = [f for f in os.listdir() if os.path.isfile(f)]
print(listOfFiles)

>>> ["a simple game.py", "data.txt", "decorator.py"]

Using pathlib from Python 3.4

import pathlib

flist = []
for p in pathlib.Path(".").iterdir():
    if p.is_file():
        print(p)
        flist.append(p)

 >>> error.PNG
 >>> exemaker.bat
 >>> guiprova.mp3
 >>> setup.py
 >>> speak_gui2.py
 >>> thumb.PNG

With list comprehension:

flist = [p for p in pathlib.Path(".").iterdir() if p.is_file()]

Alternatively, use pathlib.Path() instead of pathlib.Path(".")

Use glob method in pathlib.Path()

import pathlib

py = pathlib.Path().glob("*.py")
for file in py:
    print(file)

>>> stack_overflow_list.py
>>> stack_overflow_list_tkinter.py

Get all and only files with os.walk

import os
x = [i[2] for i in os.walk(".")]
y=[]
for t in x:
    for f in t:
        y.append(f)
print(y)

>>> ["append_to_list.py", "data.txt", "data1.txt", "data2.txt", "data_180617", "os_walk.py", "READ2.py", "read_data.py", "somma_defaltdic.py", "substitute_words.py", "sum_data.py", "data.txt", "data1.txt", "data_180617"]

Get only files with next and walk in a directory

 import os
 x = next(os.walk("F://python"))[2]
 print(x)
 
 >>> ["calculator.bat","calculator.py"]

Get only directories with next and walk in a directory

 import os
 next(os.walk("F://python"))[1] # for the current dir use (".")
 
 >>> ["python3","others"]

Get all the subdir names with walk

for r,d,f in os.walk("F:\_python"):
    for dirs in d:
        print(dirs)

>>> .vscode
>>> pyexcel
>>> pyschool.py
>>> subtitles
>>> _metaprogramming
>>> .ipynb_checkpoints

os.scandir() from Python 3.5 and greater

import os
x = [f.name for f in os.scandir() if f.is_file()]
print(x)

>>> ["calculator.bat","calculator.py"]

# Another example with scandir (a little variation from docs.python.org)
# This one is more efficient than os.listdir.
# In this case, it shows the files only in the current directory
# where the script is executed.

import os
with os.scandir() as i:
    for entry in i:
        if entry.is_file():
            print(entry.name)

>>> ebookmaker.py
>>> error.PNG
>>> exemaker.bat
>>> guiprova.mp3
>>> setup.py
>>> speakgui4.py
>>> speak_gui2.py
>>> speak_gui3.py
>>> thumb.PNG

Examples:

Ex. 1: How many files are there in the subdirectories?

In this example, we look for the number of files that are included in all the directory and its subdirectories.

import os

def count(dir, counter=0):
    "returns number of files in dir and subdirs"
    for pack in os.walk(dir):
        for f in pack[2]:
            counter += 1
    return dir + " : " + str(counter) + "files"

print(count("F:\python"))

>>> "F:\python" : 12057 files"

Ex.2: How to copy all files from a directory to another?

A script to make order in your computer finding all files of a type (default: pptx) and copying them in a new folder.

import os
import shutil
from path import path

destination = "F:\file_copied"
# os.makedirs(destination)

def copyfile(dir, filetype="pptx", counter=0):
    "Searches for pptx (or other - pptx is the default) files and copies them"
    for pack in os.walk(dir):
        for f in pack[2]:
            if f.endswith(filetype):
                fullpath = pack[0] + "\" + f
                print(fullpath)
                shutil.copy(fullpath, destination)
                counter += 1
    if counter > 0:
        print("-" * 30)
        print("	==> Found in: `" + dir + "` : " + str(counter) + " files
")

for dir in os.listdir():
    "searches for folders that starts with `_`"
    if dir[0] == "_":
        # copyfile(dir, filetype="pdf")
        copyfile(dir, filetype="txt")


>>> _compiti18Compito Contabilità 1conti.txt
>>> _compiti18Compito Contabilità 1modula4.txt
>>> _compiti18Compito Contabilità 1moduloa4.txt
>>> ------------------------
>>> ==> Found in: `_compiti18` : 3 files

Ex. 3: How to get all the files in a txt file

In case you want to create a txt file with all the file names:

import os
mylist = ""
with open("filelist.txt", "w", encoding="utf-8") as file:
    for eachfile in os.listdir():
        mylist += eachfile + "
"
    file.write(mylist)

Example: txt with all the files of an hard drive

"""
We are going to save a txt file with all the files in your directory.
We will use the function walk()
"""

import os

# see all the methods of os
# print(*dir(os), sep=", ")
listafile = []
percorso = []
with open("lista_file.txt", "w", encoding="utf-8") as testo:
    for root, dirs, files in os.walk("D:\"):
        for file in files:
            listafile.append(file)
            percorso.append(root + "\" + file)
            testo.write(file + "
")
listafile.sort()
print("N. of files", len(listafile))
with open("lista_file_ordinata.txt", "w", encoding="utf-8") as testo_ordinato:
    for file in listafile:
        testo_ordinato.write(file + "
")

with open("percorso.txt", "w", encoding="utf-8") as file_percorso:
    for file in percorso:
        file_percorso.write(file + "
")

os.system("lista_file.txt")
os.system("lista_file_ordinata.txt")
os.system("percorso.txt")

All the file of C: in one text file

This is a shorter version of the previous code. Change the folder where to start finding the files if you need to start from another position. This code generate a 50 mb on text file on my computer with something less then 500.000 lines with files with the complete path.

import os

with open("file.txt", "w", encoding="utf-8") as filewrite:
    for r, d, f in os.walk("C:\"):
        for file in f:
            filewrite.write(f"{r + file}
")

How to write a file with all paths in a folder of a type

With this function you can create a txt file that will have the name of a type of file that you look for (ex. pngfile.txt) with all the full path of all the files of that type. It can be useful sometimes, I think.

import os

def searchfiles(extension=".ttf", folder="H:\"):
    "Create a txt file with all the file of a type"
    with open(extension[1:] + "file.txt", "w", encoding="utf-8") as filewrite:
        for r, d, f in os.walk(folder):
            for file in f:
                if file.endswith(extension):
                    filewrite.write(f"{r + file}
")

# looking for png file (fonts) in the hard disk H:
searchfiles(".png", "H:\")

>>> H:4bs_18Dolphins5.png
>>> H:4bs_18Dolphins6.png
>>> H:4bs_18Dolphins7.png
>>> H:5_18marketing htmlassetsimageslogo2.png
>>> H:7z001.png
>>> H:7z002.png

(New) Find all files and open them with tkinter GUI

I just wanted to add in this 2019 a little app to search for all files in a dir and be able to open them by doubleclicking on the name of the file in the list. enter image description here

import tkinter as tk
import os

def searchfiles(extension=".txt", folder="H:\"):
    "insert all files in the listbox"
    for r, d, f in os.walk(folder):
        for file in f:
            if file.endswith(extension):
                lb.insert(0, r + "\" + file)

def open_file():
    os.startfile(lb.get(lb.curselection()[0]))

root = tk.Tk()
root.geometry("400x400")
bt = tk.Button(root, text="Search", command=lambda:searchfiles(".png", "H:\"))
bt.pack()
lb = tk.Listbox(root)
lb.pack(fill="both", expand=1)
lb.bind("<Double-Button>", lambda x: open_file())
root.mainloop()

Answer #7

This post aims to give readers a primer on SQL-flavored merging with Pandas, how to use it, and when not to use it.

In particular, here"s what this post will go through:

  • The basics - types of joins (LEFT, RIGHT, OUTER, INNER)

    • merging with different column names
    • merging with multiple columns
    • avoiding duplicate merge key column in output

What this post (and other posts by me on this thread) will not go through:

  • Performance-related discussions and timings (for now). Mostly notable mentions of better alternatives, wherever appropriate.
  • Handling suffixes, removing extra columns, renaming outputs, and other specific use cases. There are other (read: better) posts that deal with that, so figure it out!

Note Most examples default to INNER JOIN operations while demonstrating various features, unless otherwise specified.

Furthermore, all the DataFrames here can be copied and replicated so you can play with them. Also, see this post on how to read DataFrames from your clipboard.

Lastly, all visual representation of JOIN operations have been hand-drawn using Google Drawings. Inspiration from here.



Enough talk - just show me how to use merge!

Setup & Basics

np.random.seed(0)
left = pd.DataFrame({"key": ["A", "B", "C", "D"], "value": np.random.randn(4)})
right = pd.DataFrame({"key": ["B", "D", "E", "F"], "value": np.random.randn(4)})

left

  key     value
0   A  1.764052
1   B  0.400157
2   C  0.978738
3   D  2.240893

right

  key     value
0   B  1.867558
1   D -0.977278
2   E  0.950088
3   F -0.151357

For the sake of simplicity, the key column has the same name (for now).

An INNER JOIN is represented by

Note This, along with the forthcoming figures all follow this convention:

  • blue indicates rows that are present in the merge result
  • red indicates rows that are excluded from the result (i.e., removed)
  • green indicates missing values that are replaced with NaNs in the result

To perform an INNER JOIN, call merge on the left DataFrame, specifying the right DataFrame and the join key (at the very least) as arguments.

left.merge(right, on="key")
# Or, if you want to be explicit
# left.merge(right, on="key", how="inner")

  key   value_x   value_y
0   B  0.400157  1.867558
1   D  2.240893 -0.977278

This returns only rows from left and right which share a common key (in this example, "B" and "D).

A LEFT OUTER JOIN, or LEFT JOIN is represented by

This can be performed by specifying how="left".

left.merge(right, on="key", how="left")

  key   value_x   value_y
0   A  1.764052       NaN
1   B  0.400157  1.867558
2   C  0.978738       NaN
3   D  2.240893 -0.977278

Carefully note the placement of NaNs here. If you specify how="left", then only keys from left are used, and missing data from right is replaced by NaN.

And similarly, for a RIGHT OUTER JOIN, or RIGHT JOIN which is...

...specify how="right":

left.merge(right, on="key", how="right")

  key   value_x   value_y
0   B  0.400157  1.867558
1   D  2.240893 -0.977278
2   E       NaN  0.950088
3   F       NaN -0.151357

Here, keys from right are used, and missing data from left is replaced by NaN.

Finally, for the FULL OUTER JOIN, given by

specify how="outer".

left.merge(right, on="key", how="outer")

  key   value_x   value_y
0   A  1.764052       NaN
1   B  0.400157  1.867558
2   C  0.978738       NaN
3   D  2.240893 -0.977278
4   E       NaN  0.950088
5   F       NaN -0.151357

This uses the keys from both frames, and NaNs are inserted for missing rows in both.

The documentation summarizes these various merges nicely:

Enter image description here


Other JOINs - LEFT-Excluding, RIGHT-Excluding, and FULL-Excluding/ANTI JOINs

If you need LEFT-Excluding JOINs and RIGHT-Excluding JOINs in two steps.

For LEFT-Excluding JOIN, represented as

Start by performing a LEFT OUTER JOIN and then filtering (excluding!) rows coming from left only,

(left.merge(right, on="key", how="left", indicator=True)
     .query("_merge == "left_only"")
     .drop("_merge", 1))

  key   value_x  value_y
0   A  1.764052      NaN
2   C  0.978738      NaN

Where,

left.merge(right, on="key", how="left", indicator=True)

  key   value_x   value_y     _merge
0   A  1.764052       NaN  left_only
1   B  0.400157  1.867558       both
2   C  0.978738       NaN  left_only
3   D  2.240893 -0.977278       both

And similarly, for a RIGHT-Excluding JOIN,

(left.merge(right, on="key", how="right", indicator=True)
     .query("_merge == "right_only"")
     .drop("_merge", 1))

  key  value_x   value_y
2   E      NaN  0.950088
3   F      NaN -0.151357

Lastly, if you are required to do a merge that only retains keys from the left or right, but not both (IOW, performing an ANTI-JOIN),

You can do this in similar fashion—

(left.merge(right, on="key", how="outer", indicator=True)
     .query("_merge != "both"")
     .drop("_merge", 1))

  key   value_x   value_y
0   A  1.764052       NaN
2   C  0.978738       NaN
4   E       NaN  0.950088
5   F       NaN -0.151357

Different names for key columns

If the key columns are named differently—for example, left has keyLeft, and right has keyRight instead of key—then you will have to specify left_on and right_on as arguments instead of on:

left2 = left.rename({"key":"keyLeft"}, axis=1)
right2 = right.rename({"key":"keyRight"}, axis=1)

left2

  keyLeft     value
0       A  1.764052
1       B  0.400157
2       C  0.978738
3       D  2.240893

right2

  keyRight     value
0        B  1.867558
1        D -0.977278
2        E  0.950088
3        F -0.151357
left2.merge(right2, left_on="keyLeft", right_on="keyRight", how="inner")

  keyLeft   value_x keyRight   value_y
0       B  0.400157        B  1.867558
1       D  2.240893        D -0.977278

Avoiding duplicate key column in output

When merging on keyLeft from left and keyRight from right, if you only want either of the keyLeft or keyRight (but not both) in the output, you can start by setting the index as a preliminary step.

left3 = left2.set_index("keyLeft")
left3.merge(right2, left_index=True, right_on="keyRight")

    value_x keyRight   value_y
0  0.400157        B  1.867558
1  2.240893        D -0.977278

Contrast this with the output of the command just before (that is, the output of left2.merge(right2, left_on="keyLeft", right_on="keyRight", how="inner")), you"ll notice keyLeft is missing. You can figure out what column to keep based on which frame"s index is set as the key. This may matter when, say, performing some OUTER JOIN operation.


Merging only a single column from one of the DataFrames

For example, consider

right3 = right.assign(newcol=np.arange(len(right)))
right3
  key     value  newcol
0   B  1.867558       0
1   D -0.977278       1
2   E  0.950088       2
3   F -0.151357       3

If you are required to merge only "new_val" (without any of the other columns), you can usually just subset columns before merging:

left.merge(right3[["key", "newcol"]], on="key")

  key     value  newcol
0   B  0.400157       0
1   D  2.240893       1

If you"re doing a LEFT OUTER JOIN, a more performant solution would involve map:

# left["newcol"] = left["key"].map(right3.set_index("key")["newcol"]))
left.assign(newcol=left["key"].map(right3.set_index("key")["newcol"]))

  key     value  newcol
0   A  1.764052     NaN
1   B  0.400157     0.0
2   C  0.978738     NaN
3   D  2.240893     1.0

As mentioned, this is similar to, but faster than

left.merge(right3[["key", "newcol"]], on="key", how="left")

  key     value  newcol
0   A  1.764052     NaN
1   B  0.400157     0.0
2   C  0.978738     NaN
3   D  2.240893     1.0

Merging on multiple columns

To join on more than one column, specify a list for on (or left_on and right_on, as appropriate).

left.merge(right, on=["key1", "key2"] ...)

Or, in the event the names are different,

left.merge(right, left_on=["lkey1", "lkey2"], right_on=["rkey1", "rkey2"])

Other useful merge* operations and functions

This section only covers the very basics, and is designed to only whet your appetite. For more examples and cases, see the documentation on merge, join, and concat as well as the links to the function specifications.



Continue Reading

Jump to other topics in Pandas Merging 101 to continue learning:

*You are here.

Answer #8

tl;dr / quick fix

  • Don"t decode/encode willy nilly
  • Don"t assume your strings are UTF-8 encoded
  • Try to convert strings to Unicode strings as soon as possible in your code
  • Fix your locale: How to solve UnicodeDecodeError in Python 3.6?
  • Don"t be tempted to use quick reload hacks

Unicode Zen in Python 2.x - The Long Version

Without seeing the source it"s difficult to know the root cause, so I"ll have to speak generally.

UnicodeDecodeError: "ascii" codec can"t decode byte generally happens when you try to convert a Python 2.x str that contains non-ASCII to a Unicode string without specifying the encoding of the original string.

In brief, Unicode strings are an entirely separate type of Python string that does not contain any encoding. They only hold Unicode point codes and therefore can hold any Unicode point from across the entire spectrum. Strings contain encoded text, beit UTF-8, UTF-16, ISO-8895-1, GBK, Big5 etc. Strings are decoded to Unicode and Unicodes are encoded to strings. Files and text data are always transferred in encoded strings.

The Markdown module authors probably use unicode() (where the exception is thrown) as a quality gate to the rest of the code - it will convert ASCII or re-wrap existing Unicodes strings to a new Unicode string. The Markdown authors can"t know the encoding of the incoming string so will rely on you to decode strings to Unicode strings before passing to Markdown.

Unicode strings can be declared in your code using the u prefix to strings. E.g.

>>> my_u = u"my ünicôdé strįng"
>>> type(my_u)
<type "unicode">

Unicode strings may also come from file, databases and network modules. When this happens, you don"t need to worry about the encoding.

Gotchas

Conversion from str to Unicode can happen even when you don"t explicitly call unicode().

The following scenarios cause UnicodeDecodeError exceptions:

# Explicit conversion without encoding
unicode("€")

# New style format string into Unicode string
# Python will try to convert value string to Unicode first
u"The currency is: {}".format("€")

# Old style format string into Unicode string
# Python will try to convert value string to Unicode first
u"The currency is: %s" % "€"

# Append string to Unicode
# Python will try to convert string to Unicode first
u"The currency is: " + "€"         

Examples

In the following diagram, you can see how the word café has been encoded in either "UTF-8" or "Cp1252" encoding depending on the terminal type. In both examples, caf is just regular ascii. In UTF-8, é is encoded using two bytes. In "Cp1252", é is 0xE9 (which is also happens to be the Unicode point value (it"s no coincidence)). The correct decode() is invoked and conversion to a Python Unicode is successfull: Diagram of a string being converted to a Python Unicode string

In this diagram, decode() is called with ascii (which is the same as calling unicode() without an encoding given). As ASCII can"t contain bytes greater than 0x7F, this will throw a UnicodeDecodeError exception:

Diagram of a string being converted to a Python Unicode string with the wrong encoding

The Unicode Sandwich

It"s good practice to form a Unicode sandwich in your code, where you decode all incoming data to Unicode strings, work with Unicodes, then encode to strs on the way out. This saves you from worrying about the encoding of strings in the middle of your code.

Input / Decode

Source code

If you need to bake non-ASCII into your source code, just create Unicode strings by prefixing the string with a u. E.g.

u"Zürich"

To allow Python to decode your source code, you will need to add an encoding header to match the actual encoding of your file. For example, if your file was encoded as "UTF-8", you would use:

# encoding: utf-8

This is only necessary when you have non-ASCII in your source code.

Files

Usually non-ASCII data is received from a file. The io module provides a TextWrapper that decodes your file on the fly, using a given encoding. You must use the correct encoding for the file - it can"t be easily guessed. For example, for a UTF-8 file:

import io
with io.open("my_utf8_file.txt", "r", encoding="utf-8") as my_file:
     my_unicode_string = my_file.read() 

my_unicode_string would then be suitable for passing to Markdown. If a UnicodeDecodeError from the read() line, then you"ve probably used the wrong encoding value.

CSV Files

The Python 2.7 CSV module does not support non-ASCII characters üò©. Help is at hand, however, with https://pypi.python.org/pypi/backports.csv.

Use it like above but pass the opened file to it:

from backports import csv
import io
with io.open("my_utf8_file.txt", "r", encoding="utf-8") as my_file:
    for row in csv.reader(my_file):
        yield row

Databases

Most Python database drivers can return data in Unicode, but usually require a little configuration. Always use Unicode strings for SQL queries.

MySQL

In the connection string add:

charset="utf8",
use_unicode=True

E.g.

>>> db = MySQLdb.connect(host="localhost", user="root", passwd="passwd", db="sandbox", use_unicode=True, charset="utf8")
PostgreSQL

Add:

psycopg2.extensions.register_type(psycopg2.extensions.UNICODE)
psycopg2.extensions.register_type(psycopg2.extensions.UNICODEARRAY)

HTTP

Web pages can be encoded in just about any encoding. The Content-type header should contain a charset field to hint at the encoding. The content can then be decoded manually against this value. Alternatively, Python-Requests returns Unicodes in response.text.

Manually

If you must decode strings manually, you can simply do my_string.decode(encoding), where encoding is the appropriate encoding. Python 2.x supported codecs are given here: Standard Encodings. Again, if you get UnicodeDecodeError then you"ve probably got the wrong encoding.

The meat of the sandwich

Work with Unicodes as you would normal strs.

Output

stdout / printing

print writes through the stdout stream. Python tries to configure an encoder on stdout so that Unicodes are encoded to the console"s encoding. For example, if a Linux shell"s locale is en_GB.UTF-8, the output will be encoded to UTF-8. On Windows, you will be limited to an 8bit code page.

An incorrectly configured console, such as corrupt locale, can lead to unexpected print errors. PYTHONIOENCODING environment variable can force the encoding for stdout.

Files

Just like input, io.open can be used to transparently convert Unicodes to encoded byte strings.

Database

The same configuration for reading will allow Unicodes to be written directly.

Python 3

Python 3 is no more Unicode capable than Python 2.x is, however it is slightly less confused on the topic. E.g the regular str is now a Unicode string and the old str is now bytes.

The default encoding is UTF-8, so if you .decode() a byte string without giving an encoding, Python 3 uses UTF-8 encoding. This probably fixes 50% of people"s Unicode problems.

Further, open() operates in text mode by default, so returns decoded str (Unicode ones). The encoding is derived from your locale, which tends to be UTF-8 on Un*x systems or an 8-bit code page, such as windows-1251, on Windows boxes.

Why you shouldn"t use sys.setdefaultencoding("utf8")

It"s a nasty hack (there"s a reason you have to use reload) that will only mask problems and hinder your migration to Python 3.x. Understand the problem, fix the root cause and enjoy Unicode zen. See Why should we NOT use sys.setdefaultencoding("utf-8") in a py script? for further details

Answer #9

Clear the cache directory where appropriate for your system

Linux and Unix

~/.cache/pip  # and it respects the XDG_CACHE_HOME directory.

OS X

~/Library/Caches/pip

Windows

%LocalAppData%pipCache

UPDATE

With pip 20.1 or later, you can find the full path for your operating system easily by typing this in the command line:

pip cache dir

Example output on my Ubuntu installation:

‚ûú pip3 cache dir
/home/tawanda/.cache/pip

Answer #10

Calculate timestamps within your DB, not your client

For sanity, you probably want to have all datetimes calculated by your DB server, rather than the application server. Calculating the timestamp in the application can lead to problems because network latency is variable, clients experience slightly different clock drift, and different programming languages occasionally calculate time slightly differently.

SQLAlchemy allows you to do this by passing func.now() or func.current_timestamp() (they are aliases of each other) which tells the DB to calculate the timestamp itself.

Use SQLALchemy"s server_default

Additionally, for a default where you"re already telling the DB to calculate the value, it"s generally better to use server_default instead of default. This tells SQLAlchemy to pass the default value as part of the CREATE TABLE statement.

For example, if you write an ad hoc script against this table, using server_default means you won"t need to worry about manually adding a timestamp call to your script--the database will set it automatically.

Understanding SQLAlchemy"s onupdate/server_onupdate

SQLAlchemy also supports onupdate so that anytime the row is updated it inserts a new timestamp. Again, best to tell the DB to calculate the timestamp itself:

from sqlalchemy.sql import func

time_created = Column(DateTime(timezone=True), server_default=func.now())
time_updated = Column(DateTime(timezone=True), onupdate=func.now())

There is a server_onupdate parameter, but unlike server_default, it doesn"t actually set anything serverside. It just tells SQLalchemy that your database will change the column when an update happens (perhaps you created a trigger on the column ), so SQLAlchemy will ask for the return value so it can update the corresponding object.

One other potential gotcha:

You might be surprised to notice that if you make a bunch of changes within a single transaction, they all have the same timestamp. That"s because the SQL standard specifies that CURRENT_TIMESTAMP returns values based on the start of the transaction.

PostgreSQL provides the non-SQL-standard statement_timestamp() and clock_timestamp() which do change within a transaction. Docs here: https://www.postgresql.org/docs/current/static/functions-datetime.html#FUNCTIONS-DATETIME-CURRENT

UTC timestamp

If you want to use UTC timestamps, a stub of implementation for func.utcnow() is provided in SQLAlchemy documentation. You need to provide appropriate driver-specific functions on your own though.

Absolute Deviation and Absolute Mean Deviation Using NumPy | python: StackOverflow Questions

Meaning of @classmethod and @staticmethod for beginner?

Question by user1632861

Could someone explain to me the meaning of @classmethod and @staticmethod in python? I need to know the difference and the meaning.

As far as I understand, @classmethod tells a class that it"s a method which should be inherited into subclasses, or... something. However, what"s the point of that? Why not just define the class method without adding @classmethod or @staticmethod or any @ definitions?

tl;dr: when should I use them, why should I use them, and how should I use them?

What is the meaning of single and double underscore before an object name?

Can someone please explain the exact meaning of having single and double leading underscores before an object"s name in Python, and the difference between both?

Also, does that meaning stay the same regardless of whether the object in question is a variable, a function, a method, etc.?

What does -> mean in Python function definitions?

I"ve recently noticed something interesting when looking at Python 3.3 grammar specification:

funcdef: "def" NAME parameters ["->" test] ":" suite

The optional "arrow" block was absent in Python 2 and I couldn"t find any information regarding its meaning in Python 3. It turns out this is correct Python and it"s accepted by the interpreter:

def f(x) -> 123:
    return x

I thought that this might be some kind of a precondition syntax, but:

  • I cannot test x here, as it is still undefined,
  • No matter what I put after the arrow (e.g. 2 < 1), it doesn"t affect the function behavior.

Could anyone accustomed with this syntax style explain it?

What does the star and doublestar operator mean in a function call?

What does the * operator mean in Python, such as in code like zip(*x) or f(**k)?

  1. How is it handled internally in the interpreter?
  2. Does it affect performance at all? Is it fast or slow?
  3. When is it useful and when is it not?
  4. Should it be used in a function declaration or in a call?

Get statistics for each group (such as count, mean, etc) using pandas GroupBy?

I have a data frame df and I use several columns from it to groupby:

df["col1","col2","col3","col4"].groupby(["col1","col2"]).mean()

In the above way I almost get the table (data frame) that I need. What is missing is an additional column that contains number of rows in each group. In other words, I have mean but I also would like to know how many number were used to get these means. For example in the first group there are 8 values and in the second one 10 and so on.

In short: How do I get group-wise statistics for a dataframe?

What does -1 mean in numpy reshape?

A numpy matrix can be reshaped into a vector using reshape function with parameter -1. But I don"t know what -1 means here.

For example:

a = numpy.matrix([[1, 2, 3, 4], [5, 6, 7, 8]])
b = numpy.reshape(a, -1)

The result of b is: matrix([[1, 2, 3, 4, 5, 6, 7, 8]])

Does anyone know what -1 means here? And it seems python assign -1 several meanings, such as: array[-1] means the last element. Can you give an explanation?

In Matplotlib, what does the argument mean in fig.add_subplot(111)?

Sometimes I come across code such as this:

import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y = [1, 4, 9, 16, 25]
fig = plt.figure()
fig.add_subplot(111)
plt.scatter(x, y)
plt.show()

Which produces:

Example plot produced by the included code

I"ve been reading the documentation like crazy but I can"t find an explanation for the 111. sometimes I see a 212.

What does the argument of fig.add_subplot() mean?

What does it mean if a Python object is "subscriptable" or not?

Question by Alistair

Which types of objects fall into the domain of "subscriptable"?

What does "SyntaxError: Missing parentheses in call to "print"" mean in Python?

When I try to use a print statement in Python, it gives me this error:

>>> print "Hello, World!"
  File "<stdin>", line 1
    print "Hello, World!"
                        ^
SyntaxError: Missing parentheses in call to "print"

What does that mean?

What does `ValueError: cannot reindex from a duplicate axis` mean?

I am getting a ValueError: cannot reindex from a duplicate axis when I am trying to set an index to a certain value. I tried to reproduce this with a simple example, but I could not do it.

Here is my session inside of ipdb trace. I have a DataFrame with string index, and integer columns, float values. However when I try to create sum index for sum of all columns I am getting ValueError: cannot reindex from a duplicate axis error. I created a small DataFrame with the same characteristics, but was not able to reproduce the problem, what could I be missing?

I don"t really understand what ValueError: cannot reindex from a duplicate axismeans, what does this error message mean? Maybe this will help me diagnose the problem, and this is most answerable part of my question.

ipdb> type(affinity_matrix)
<class "pandas.core.frame.DataFrame">
ipdb> affinity_matrix.shape
(333, 10)
ipdb> affinity_matrix.columns
Int64Index([9315684, 9315597, 9316591, 9320520, 9321163, 9320615, 9321187, 9319487, 9319467, 9320484], dtype="int64")
ipdb> affinity_matrix.index
Index([u"001", u"002", u"003", u"004", u"005", u"008", u"009", u"010", u"011", u"014", u"015", u"016", u"018", u"020", u"021", u"022", u"024", u"025", u"026", u"027", u"028", u"029", u"030", u"032", u"033", u"034", u"035", u"036", u"039", u"040", u"041", u"042", u"043", u"044", u"045", u"047", u"047", u"048", u"050", u"053", u"054", u"055", u"056", u"057", u"058", u"059", u"060", u"061", u"062", u"063", u"065", u"067", u"068", u"069", u"070", u"071", u"072", u"073", u"074", u"075", u"076", u"077", u"078", u"080", u"082", u"083", u"084", u"085", u"086", u"089", u"090", u"091", u"092", u"093", u"094", u"095", u"096", u"097", u"098", u"100", u"101", u"103", u"104", u"105", u"106", u"107", u"108", u"109", u"110", u"111", u"112", u"113", u"114", u"115", u"116", u"117", u"118", u"119", u"121", u"122", ...], dtype="object")

ipdb> affinity_matrix.values.dtype
dtype("float64")
ipdb> "sums" in affinity_matrix.index
False

Here is the error:

ipdb> affinity_matrix.loc["sums"] = affinity_matrix.sum(axis=0)
*** ValueError: cannot reindex from a duplicate axis

I tried to reproduce this with a simple example, but I failed

In [32]: import pandas as pd

In [33]: import numpy as np

In [34]: a = np.arange(35).reshape(5,7)

In [35]: df = pd.DataFrame(a, ["x", "y", "u", "z", "w"], range(10, 17))

In [36]: df.values.dtype
Out[36]: dtype("int64")

In [37]: df.loc["sums"] = df.sum(axis=0)

In [38]: df
Out[38]: 
      10  11  12  13  14  15   16
x      0   1   2   3   4   5    6
y      7   8   9  10  11  12   13
u     14  15  16  17  18  19   20
z     21  22  23  24  25  26   27
w     28  29  30  31  32  33   34
sums  70  75  80  85  90  95  100

Answer #1

Recommendation for beginners:

This is my personal recommendation for beginners: start by learning virtualenv and pip, tools which work with both Python 2 and 3 and in a variety of situations, and pick up other tools once you start needing them.

PyPI packages not in the standard library:

  • virtualenv is a very popular tool that creates isolated Python environments for Python libraries. If you"re not familiar with this tool, I highly recommend learning it, as it is a very useful tool, and I"ll be making comparisons to it for the rest of this answer.

It works by installing a bunch of files in a directory (eg: env/), and then modifying the PATH environment variable to prefix it with a custom bin directory (eg: env/bin/). An exact copy of the python or python3 binary is placed in this directory, but Python is programmed to look for libraries relative to its path first, in the environment directory. It"s not part of Python"s standard library, but is officially blessed by the PyPA (Python Packaging Authority). Once activated, you can install packages in the virtual environment using pip.

  • pyenv is used to isolate Python versions. For example, you may want to test your code against Python 2.7, 3.6, 3.7 and 3.8, so you"ll need a way to switch between them. Once activated, it prefixes the PATH environment variable with ~/.pyenv/shims, where there are special files matching the Python commands (python, pip). These are not copies of the Python-shipped commands; they are special scripts that decide on the fly which version of Python to run based on the PYENV_VERSION environment variable, or the .python-version file, or the ~/.pyenv/version file. pyenv also makes the process of downloading and installing multiple Python versions easier, using the command pyenv install.

  • pyenv-virtualenv is a plugin for pyenv by the same author as pyenv, to allow you to use pyenv and virtualenv at the same time conveniently. However, if you"re using Python 3.3 or later, pyenv-virtualenv will try to run python -m venv if it is available, instead of virtualenv. You can use virtualenv and pyenv together without pyenv-virtualenv, if you don"t want the convenience features.

  • virtualenvwrapper is a set of extensions to virtualenv (see docs). It gives you commands like mkvirtualenv, lssitepackages, and especially workon for switching between different virtualenv directories. This tool is especially useful if you want multiple virtualenv directories.

  • pyenv-virtualenvwrapper is a plugin for pyenv by the same author as pyenv, to conveniently integrate virtualenvwrapper into pyenv.

  • pipenv aims to combine Pipfile, pip and virtualenv into one command on the command-line. The virtualenv directory typically gets placed in ~/.local/share/virtualenvs/XXX, with XXX being a hash of the path of the project directory. This is different from virtualenv, where the directory is typically in the current working directory. pipenv is meant to be used when developing Python applications (as opposed to libraries). There are alternatives to pipenv, such as poetry, which I won"t list here since this question is only about the packages that are similarly named.

Standard library:

  • pyvenv (not to be confused with pyenv in the previous section) is a script shipped with Python 3 but deprecated in Python 3.6 as it had problems (not to mention the confusing name). In Python 3.6+, the exact equivalent is python3 -m venv.

  • venv is a package shipped with Python 3, which you can run using python3 -m venv (although for some reason some distros separate it out into a separate distro package, such as python3-venv on Ubuntu/Debian). It serves the same purpose as virtualenv, but only has a subset of its features (see a comparison here). virtualenv continues to be more popular than venv, especially since the former supports both Python 2 and 3.

Answer #2

You have four main options for converting types in pandas:

  1. to_numeric() - provides functionality to safely convert non-numeric types (e.g. strings) to a suitable numeric type. (See also to_datetime() and to_timedelta().)

  2. astype() - convert (almost) any type to (almost) any other type (even if it"s not necessarily sensible to do so). Also allows you to convert to categorial types (very useful).

  3. infer_objects() - a utility method to convert object columns holding Python objects to a pandas type if possible.

  4. convert_dtypes() - convert DataFrame columns to the "best possible" dtype that supports pd.NA (pandas" object to indicate a missing value).

Read on for more detailed explanations and usage of each of these methods.


1. to_numeric()

The best way to convert one or more columns of a DataFrame to numeric values is to use pandas.to_numeric().

This function will try to change non-numeric objects (such as strings) into integers or floating point numbers as appropriate.

Basic usage

The input to to_numeric() is a Series or a single column of a DataFrame.

>>> s = pd.Series(["8", 6, "7.5", 3, "0.9"]) # mixed string and numeric values
>>> s
0      8
1      6
2    7.5
3      3
4    0.9
dtype: object

>>> pd.to_numeric(s) # convert everything to float values
0    8.0
1    6.0
2    7.5
3    3.0
4    0.9
dtype: float64

As you can see, a new Series is returned. Remember to assign this output to a variable or column name to continue using it:

# convert Series
my_series = pd.to_numeric(my_series)

# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])

You can also use it to convert multiple columns of a DataFrame via the apply() method:

# convert all columns of DataFrame
df = df.apply(pd.to_numeric) # convert all columns of DataFrame

# convert just columns "a" and "b"
df[["a", "b"]] = df[["a", "b"]].apply(pd.to_numeric)

As long as your values can all be converted, that"s probably all you need.

Error handling

But what if some values can"t be converted to a numeric type?

to_numeric() also takes an errors keyword argument that allows you to force non-numeric values to be NaN, or simply ignore columns containing these values.

Here"s an example using a Series of strings s which has the object dtype:

>>> s = pd.Series(["1", "2", "4.7", "pandas", "10"])
>>> s
0         1
1         2
2       4.7
3    pandas
4        10
dtype: object

The default behaviour is to raise if it can"t convert a value. In this case, it can"t cope with the string "pandas":

>>> pd.to_numeric(s) # or pd.to_numeric(s, errors="raise")
ValueError: Unable to parse string

Rather than fail, we might want "pandas" to be considered a missing/bad numeric value. We can coerce invalid values to NaN as follows using the errors keyword argument:

>>> pd.to_numeric(s, errors="coerce")
0     1.0
1     2.0
2     4.7
3     NaN
4    10.0
dtype: float64

The third option for errors is just to ignore the operation if an invalid value is encountered:

>>> pd.to_numeric(s, errors="ignore")
# the original Series is returned untouched

This last option is particularly useful when you want to convert your entire DataFrame, but don"t not know which of our columns can be converted reliably to a numeric type. In that case just write:

df.apply(pd.to_numeric, errors="ignore")

The function will be applied to each column of the DataFrame. Columns that can be converted to a numeric type will be converted, while columns that cannot (e.g. they contain non-digit strings or dates) will be left alone.

Downcasting

By default, conversion with to_numeric() will give you either a int64 or float64 dtype (or whatever integer width is native to your platform).

That"s usually what you want, but what if you wanted to save some memory and use a more compact dtype, like float32, or int8?

to_numeric() gives you the option to downcast to either "integer", "signed", "unsigned", "float". Here"s an example for a simple series s of integer type:

>>> s = pd.Series([1, 2, -7])
>>> s
0    1
1    2
2   -7
dtype: int64

Downcasting to "integer" uses the smallest possible integer that can hold the values:

>>> pd.to_numeric(s, downcast="integer")
0    1
1    2
2   -7
dtype: int8

Downcasting to "float" similarly picks a smaller than normal floating type:

>>> pd.to_numeric(s, downcast="float")
0    1.0
1    2.0
2   -7.0
dtype: float32

2. astype()

The astype() method enables you to be explicit about the dtype you want your DataFrame or Series to have. It"s very versatile in that you can try and go from one type to the any other.

Basic usage

Just pick a type: you can use a NumPy dtype (e.g. np.int16), some Python types (e.g. bool), or pandas-specific types (like the categorical dtype).

Call the method on the object you want to convert and astype() will try and convert it for you:

# convert all DataFrame columns to the int64 dtype
df = df.astype(int)

# convert column "a" to int64 dtype and "b" to complex type
df = df.astype({"a": int, "b": complex})

# convert Series to float16 type
s = s.astype(np.float16)

# convert Series to Python strings
s = s.astype(str)

# convert Series to categorical type - see docs for more details
s = s.astype("category")

Notice I said "try" - if astype() does not know how to convert a value in the Series or DataFrame, it will raise an error. For example if you have a NaN or inf value you"ll get an error trying to convert it to an integer.

As of pandas 0.20.0, this error can be suppressed by passing errors="ignore". Your original object will be return untouched.

Be careful

astype() is powerful, but it will sometimes convert values "incorrectly". For example:

>>> s = pd.Series([1, 2, -7])
>>> s
0    1
1    2
2   -7
dtype: int64

These are small integers, so how about converting to an unsigned 8-bit type to save memory?

>>> s.astype(np.uint8)
0      1
1      2
2    249
dtype: uint8

The conversion worked, but the -7 was wrapped round to become 249 (i.e. 28 - 7)!

Trying to downcast using pd.to_numeric(s, downcast="unsigned") instead could help prevent this error.


3. infer_objects()

Version 0.21.0 of pandas introduced the method infer_objects() for converting columns of a DataFrame that have an object datatype to a more specific type (soft conversions).

For example, here"s a DataFrame with two columns of object type. One holds actual integers and the other holds strings representing integers:

>>> df = pd.DataFrame({"a": [7, 1, 5], "b": ["3","2","1"]}, dtype="object")
>>> df.dtypes
a    object
b    object
dtype: object

Using infer_objects(), you can change the type of column "a" to int64:

>>> df = df.infer_objects()
>>> df.dtypes
a     int64
b    object
dtype: object

Column "b" has been left alone since its values were strings, not integers. If you wanted to try and force the conversion of both columns to an integer type, you could use df.astype(int) instead.


4. convert_dtypes()

Version 1.0 and above includes a method convert_dtypes() to convert Series and DataFrame columns to the best possible dtype that supports the pd.NA missing value.

Here "best possible" means the type most suited to hold the values. For example, this a pandas integer type if all of the values are integers (or missing values): an object column of Python integer objects is converted to Int64, a column of NumPy int32 values will become the pandas dtype Int32.

With our object DataFrame df, we get the following result:

>>> df.convert_dtypes().dtypes                                             
a     Int64
b    string
dtype: object

Since column "a" held integer values, it was converted to the Int64 type (which is capable of holding missing values, unlike int64).

Column "b" contained string objects, so was changed to pandas" string dtype.

By default, this method will infer the type from object values in each column. We can change this by passing infer_objects=False:

>>> df.convert_dtypes(infer_objects=False).dtypes                          
a    object
b    string
dtype: object

Now column "a" remained an object column: pandas knows it can be described as an "integer" column (internally it ran infer_dtype) but didn"t infer exactly what dtype of integer it should have so did not convert it. Column "b" was again converted to "string" dtype as it was recognised as holding "string" values.

Answer #3

How to iterate over rows in a DataFrame in Pandas?

Answer: DON"T*!

Iteration in Pandas is an anti-pattern and is something you should only do when you have exhausted every other option. You should not use any function with "iter" in its name for more than a few thousand rows or you will have to get used to a lot of waiting.

Do you want to print a DataFrame? Use DataFrame.to_string().

Do you want to compute something? In that case, search for methods in this order (list modified from here):

  1. Vectorization
  2. Cython routines
  3. List Comprehensions (vanilla for loop)
  4. DataFrame.apply(): i)  Reductions that can be performed in Cython, ii) Iteration in Python space
  5. DataFrame.itertuples() and iteritems()
  6. DataFrame.iterrows()

iterrows and itertuples (both receiving many votes in answers to this question) should be used in very rare circumstances, such as generating row objects/nametuples for sequential processing, which is really the only thing these functions are useful for.

Appeal to Authority

The documentation page on iteration has a huge red warning box that says:

Iterating through pandas objects is generally slow. In many cases, iterating manually over the rows is not needed [...].

* It"s actually a little more complicated than "don"t". df.iterrows() is the correct answer to this question, but "vectorize your ops" is the better one. I will concede that there are circumstances where iteration cannot be avoided (for example, some operations where the result depends on the value computed for the previous row). However, it takes some familiarity with the library to know when. If you"re not sure whether you need an iterative solution, you probably don"t. PS: To know more about my rationale for writing this answer, skip to the very bottom.


Faster than Looping: Vectorization, Cython

A good number of basic operations and computations are "vectorised" by pandas (either through NumPy, or through Cythonized functions). This includes arithmetic, comparisons, (most) reductions, reshaping (such as pivoting), joins, and groupby operations. Look through the documentation on Essential Basic Functionality to find a suitable vectorised method for your problem.

If none exists, feel free to write your own using custom Cython extensions.


Next Best Thing: List Comprehensions*

List comprehensions should be your next port of call if 1) there is no vectorized solution available, 2) performance is important, but not important enough to go through the hassle of cythonizing your code, and 3) you"re trying to perform elementwise transformation on your code. There is a good amount of evidence to suggest that list comprehensions are sufficiently fast (and even sometimes faster) for many common Pandas tasks.

The formula is simple,

# Iterating over one column - `f` is some function that processes your data
result = [f(x) for x in df["col"]]
# Iterating over two columns, use `zip`
result = [f(x, y) for x, y in zip(df["col1"], df["col2"])]
# Iterating over multiple columns - same data type
result = [f(row[0], ..., row[n]) for row in df[["col1", ...,"coln"]].to_numpy()]
# Iterating over multiple columns - differing data type
result = [f(row[0], ..., row[n]) for row in zip(df["col1"], ..., df["coln"])]

If you can encapsulate your business logic into a function, you can use a list comprehension that calls it. You can make arbitrarily complex things work through the simplicity and speed of raw Python code.

Caveats

List comprehensions assume that your data is easy to work with - what that means is your data types are consistent and you don"t have NaNs, but this cannot always be guaranteed.

  1. The first one is more obvious, but when dealing with NaNs, prefer in-built pandas methods if they exist (because they have much better corner-case handling logic), or ensure your business logic includes appropriate NaN handling logic.
  2. When dealing with mixed data types you should iterate over zip(df["A"], df["B"], ...) instead of df[["A", "B"]].to_numpy() as the latter implicitly upcasts data to the most common type. As an example if A is numeric and B is string, to_numpy() will cast the entire array to string, which may not be what you want. Fortunately zipping your columns together is the most straightforward workaround to this.

*Your mileage may vary for the reasons outlined in the Caveats section above.


An Obvious Example

Let"s demonstrate the difference with a simple example of adding two pandas columns A + B. This is a vectorizable operaton, so it will be easy to contrast the performance of the methods discussed above.

Benchmarking code, for your reference. The line at the bottom measures a function written in numpandas, a style of Pandas that mixes heavily with NumPy to squeeze out maximum performance. Writing numpandas code should be avoided unless you know what you"re doing. Stick to the API where you can (i.e., prefer vec over vec_numpy).

I should mention, however, that it isn"t always this cut and dry. Sometimes the answer to "what is the best method for an operation" is "it depends on your data". My advice is to test out different approaches on your data before settling on one.


Further Reading

* Pandas string methods are "vectorized" in the sense that they are specified on the series but operate on each element. The underlying mechanisms are still iterative, because string operations are inherently hard to vectorize.


Why I Wrote this Answer

A common trend I notice from new users is to ask questions of the form "How can I iterate over my df to do X?". Showing code that calls iterrows() while doing something inside a for loop. Here is why. A new user to the library who has not been introduced to the concept of vectorization will likely envision the code that solves their problem as iterating over their data to do something. Not knowing how to iterate over a DataFrame, the first thing they do is Google it and end up here, at this question. They then see the accepted answer telling them how to, and they close their eyes and run this code without ever first questioning if iteration is not the right thing to do.

The aim of this answer is to help new users understand that iteration is not necessarily the solution to every problem, and that better, faster and more idiomatic solutions could exist, and that it is worth investing time in exploring them. I"m not trying to start a war of iteration vs. vectorization, but I want new users to be informed when developing solutions to their problems with this library.

Answer #4

This is the behaviour to adopt when the referenced object is deleted. It is not specific to Django; this is an SQL standard. Although Django has its own implementation on top of SQL. (1)

There are seven possible actions to take when such event occurs:

  • CASCADE: When the referenced object is deleted, also delete the objects that have references to it (when you remove a blog post for instance, you might want to delete comments as well). SQL equivalent: CASCADE.
  • PROTECT: Forbid the deletion of the referenced object. To delete it you will have to delete all objects that reference it manually. SQL equivalent: RESTRICT.
  • RESTRICT: (introduced in Django 3.1) Similar behavior as PROTECT that matches SQL"s RESTRICT more accurately. (See django documentation example)
  • SET_NULL: Set the reference to NULL (requires the field to be nullable). For instance, when you delete a User, you might want to keep the comments he posted on blog posts, but say it was posted by an anonymous (or deleted) user. SQL equivalent: SET NULL.
  • SET_DEFAULT: Set the default value. SQL equivalent: SET DEFAULT.
  • SET(...): Set a given value. This one is not part of the SQL standard and is entirely handled by Django.
  • DO_NOTHING: Probably a very bad idea since this would create integrity issues in your database (referencing an object that actually doesn"t exist). SQL equivalent: NO ACTION. (2)

Source: Django documentation

See also the documentation of PostgreSQL for instance.

In most cases, CASCADE is the expected behaviour, but for every ForeignKey, you should always ask yourself what is the expected behaviour in this situation. PROTECT and SET_NULL are often useful. Setting CASCADE where it should not, can potentially delete all of your database in cascade, by simply deleting a single user.


Additional note to clarify cascade direction

It"s funny to notice that the direction of the CASCADE action is not clear to many people. Actually, it"s funny to notice that only the CASCADE action is not clear. I understand the cascade behavior might be confusing, however you must think that it is the same direction as any other action. Thus, if you feel that CASCADE direction is not clear to you, it actually means that on_delete behavior is not clear to you.

In your database, a foreign key is basically represented by an integer field which value is the primary key of the foreign object. Let"s say you have an entry comment_A, which has a foreign key to an entry article_B. If you delete the entry comment_A, everything is fine. article_B used to live without comment_A and don"t bother if it"s deleted. However, if you delete article_B, then comment_A panics! It never lived without article_B and needs it, and it"s part of its attributes (article=article_B, but what is article_B???). This is where on_delete steps in, to determine how to resolve this integrity error, either by saying:

  • "No! Please! Don"t! I can"t live without you!" (which is said PROTECT or RESTRICT in Django/SQL)
  • "All right, if I"m not yours, then I"m nobody"s" (which is said SET_NULL)
  • "Good bye world, I can"t live without article_B" and commit suicide (this is the CASCADE behavior).
  • "It"s OK, I"ve got spare lover, and I"ll reference article_C from now" (SET_DEFAULT, or even SET(...)).
  • "I can"t face reality, and I"ll keep calling your name even if that"s the only thing left to me!" (DO_NOTHING)

I hope it makes cascade direction clearer. :)


Footnotes

(1) Django has its own implementation on top of SQL. And, as mentioned by @JoeMjr2 in the comments below, Django will not create the SQL constraints. If you want the constraints to be ensured by your database (for instance, if your database is used by another application, or if you hang in the database console from time to time), you might want to set the related constraints manually yourself. There is an open ticket to add support for database-level on delete constrains in Django.

(2) Actually, there is one case where DO_NOTHING can be useful: If you want to skip Django"s implementation and implement the constraint yourself at the database-level.

Answer #5

Label vs. Location

The main distinction between the two methods is:

  • loc gets rows (and/or columns) with particular labels.

  • iloc gets rows (and/or columns) at integer locations.

To demonstrate, consider a series s of characters with a non-monotonic integer index:

>>> s = pd.Series(list("abcdef"), index=[49, 48, 47, 0, 1, 2]) 
49    a
48    b
47    c
0     d
1     e
2     f

>>> s.loc[0]    # value at index label 0
"d"

>>> s.iloc[0]   # value at index location 0
"a"

>>> s.loc[0:1]  # rows at index labels between 0 and 1 (inclusive)
0    d
1    e

>>> s.iloc[0:1] # rows at index location between 0 and 1 (exclusive)
49    a

Here are some of the differences/similarities between s.loc and s.iloc when passed various objects:

<object> description s.loc[<object>] s.iloc[<object>]
0 single item Value at index label 0 (the string "d") Value at index location 0 (the string "a")
0:1 slice Two rows (labels 0 and 1) One row (first row at location 0)
1:47 slice with out-of-bounds end Zero rows (empty Series) Five rows (location 1 onwards)
1:47:-1 slice with negative step three rows (labels 1 back to 47) Zero rows (empty Series)
[2, 0] integer list Two rows with given labels Two rows with given locations
s > "e" Bool series (indicating which values have the property) One row (containing "f") NotImplementedError
(s>"e").values Bool array One row (containing "f") Same as loc
999 int object not in index KeyError IndexError (out of bounds)
-1 int object not in index KeyError Returns last value in s
lambda x: x.index[3] callable applied to series (here returning 3rd item in index) s.loc[s.index[3]] s.iloc[s.index[3]]

loc"s label-querying capabilities extend well-beyond integer indexes and it"s worth highlighting a couple of additional examples.

Here"s a Series where the index contains string objects:

>>> s2 = pd.Series(s.index, index=s.values)
>>> s2
a    49
b    48
c    47
d     0
e     1
f     2

Since loc is label-based, it can fetch the first value in the Series using s2.loc["a"]. It can also slice with non-integer objects:

>>> s2.loc["c":"e"]  # all rows lying between "c" and "e" (inclusive)
c    47
d     0
e     1

For DateTime indexes, we don"t need to pass the exact date/time to fetch by label. For example:

>>> s3 = pd.Series(list("abcde"), pd.date_range("now", periods=5, freq="M")) 
>>> s3
2021-01-31 16:41:31.879768    a
2021-02-28 16:41:31.879768    b
2021-03-31 16:41:31.879768    c
2021-04-30 16:41:31.879768    d
2021-05-31 16:41:31.879768    e

Then to fetch the row(s) for March/April 2021 we only need:

>>> s3.loc["2021-03":"2021-04"]
2021-03-31 17:04:30.742316    c
2021-04-30 17:04:30.742316    d

Rows and Columns

loc and iloc work the same way with DataFrames as they do with Series. It"s useful to note that both methods can address columns and rows together.

When given a tuple, the first element is used to index the rows and, if it exists, the second element is used to index the columns.

Consider the DataFrame defined below:

>>> import numpy as np 
>>> df = pd.DataFrame(np.arange(25).reshape(5, 5),  
                      index=list("abcde"), 
                      columns=["x","y","z", 8, 9])
>>> df
    x   y   z   8   9
a   0   1   2   3   4
b   5   6   7   8   9
c  10  11  12  13  14
d  15  16  17  18  19
e  20  21  22  23  24

Then for example:

>>> df.loc["c": , :"z"]  # rows "c" and onwards AND columns up to "z"
    x   y   z
c  10  11  12
d  15  16  17
e  20  21  22

>>> df.iloc[:, 3]        # all rows, but only the column at index location 3
a     3
b     8
c    13
d    18
e    23

Sometimes we want to mix label and positional indexing methods for the rows and columns, somehow combining the capabilities of loc and iloc.

For example, consider the following DataFrame. How best to slice the rows up to and including "c" and take the first four columns?

>>> import numpy as np 
>>> df = pd.DataFrame(np.arange(25).reshape(5, 5),  
                      index=list("abcde"), 
                      columns=["x","y","z", 8, 9])
>>> df
    x   y   z   8   9
a   0   1   2   3   4
b   5   6   7   8   9
c  10  11  12  13  14
d  15  16  17  18  19
e  20  21  22  23  24

We can achieve this result using iloc and the help of another method:

>>> df.iloc[:df.index.get_loc("c") + 1, :4]
    x   y   z   8
a   0   1   2   3
b   5   6   7   8
c  10  11  12  13

get_loc() is an index method meaning "get the position of the label in this index". Note that since slicing with iloc is exclusive of its endpoint, we must add 1 to this value if we want row "c" as well.

Answer #6

Quick Answer:

The simplest way to get row counts per group is by calling .size(), which returns a Series:

df.groupby(["col1","col2"]).size()


Usually you want this result as a DataFrame (instead of a Series) so you can do:

df.groupby(["col1", "col2"]).size().reset_index(name="counts")


If you want to find out how to calculate the row counts and other statistics for each group continue reading below.


Detailed example:

Consider the following example dataframe:

In [2]: df
Out[2]: 
  col1 col2  col3  col4  col5  col6
0    A    B  0.20 -0.61 -0.49  1.49
1    A    B -1.53 -1.01 -0.39  1.82
2    A    B -0.44  0.27  0.72  0.11
3    A    B  0.28 -1.32  0.38  0.18
4    C    D  0.12  0.59  0.81  0.66
5    C    D -0.13 -1.65 -1.64  0.50
6    C    D -1.42 -0.11 -0.18 -0.44
7    E    F -0.00  1.42 -0.26  1.17
8    E    F  0.91 -0.47  1.35 -0.34
9    G    H  1.48 -0.63 -1.14  0.17

First let"s use .size() to get the row counts:

In [3]: df.groupby(["col1", "col2"]).size()
Out[3]: 
col1  col2
A     B       4
C     D       3
E     F       2
G     H       1
dtype: int64

Then let"s use .size().reset_index(name="counts") to get the row counts:

In [4]: df.groupby(["col1", "col2"]).size().reset_index(name="counts")
Out[4]: 
  col1 col2  counts
0    A    B       4
1    C    D       3
2    E    F       2
3    G    H       1


Including results for more statistics

When you want to calculate statistics on grouped data, it usually looks like this:

In [5]: (df
   ...: .groupby(["col1", "col2"])
   ...: .agg({
   ...:     "col3": ["mean", "count"], 
   ...:     "col4": ["median", "min", "count"]
   ...: }))
Out[5]: 
            col4                  col3      
          median   min count      mean count
col1 col2                                   
A    B    -0.810 -1.32     4 -0.372500     4
C    D    -0.110 -1.65     3 -0.476667     3
E    F     0.475 -0.47     2  0.455000     2
G    H    -0.630 -0.63     1  1.480000     1

The result above is a little annoying to deal with because of the nested column labels, and also because row counts are on a per column basis.

To gain more control over the output I usually split the statistics into individual aggregations that I then combine using join. It looks like this:

In [6]: gb = df.groupby(["col1", "col2"])
   ...: counts = gb.size().to_frame(name="counts")
   ...: (counts
   ...:  .join(gb.agg({"col3": "mean"}).rename(columns={"col3": "col3_mean"}))
   ...:  .join(gb.agg({"col4": "median"}).rename(columns={"col4": "col4_median"}))
   ...:  .join(gb.agg({"col4": "min"}).rename(columns={"col4": "col4_min"}))
   ...:  .reset_index()
   ...: )
   ...: 
Out[6]: 
  col1 col2  counts  col3_mean  col4_median  col4_min
0    A    B       4  -0.372500       -0.810     -1.32
1    C    D       3  -0.476667       -0.110     -1.65
2    E    F       2   0.455000        0.475     -0.47
3    G    H       1   1.480000       -0.630     -0.63



Footnotes

The code used to generate the test data is shown below:

In [1]: import numpy as np
   ...: import pandas as pd 
   ...: 
   ...: keys = np.array([
   ...:         ["A", "B"],
   ...:         ["A", "B"],
   ...:         ["A", "B"],
   ...:         ["A", "B"],
   ...:         ["C", "D"],
   ...:         ["C", "D"],
   ...:         ["C", "D"],
   ...:         ["E", "F"],
   ...:         ["E", "F"],
   ...:         ["G", "H"] 
   ...:         ])
   ...: 
   ...: df = pd.DataFrame(
   ...:     np.hstack([keys,np.random.randn(10,4).round(2)]), 
   ...:     columns = ["col1", "col2", "col3", "col4", "col5", "col6"]
   ...: )
   ...: 
   ...: df[["col3", "col4", "col5", "col6"]] = 
   ...:     df[["col3", "col4", "col5", "col6"]].astype(float)
   ...: 


Disclaimer:

If some of the columns that you are aggregating have null values, then you really want to be looking at the group row counts as an independent aggregation for each column. Otherwise you may be misled as to how many records are actually being used to calculate things like the mean because pandas will drop NaN entries in the mean calculation without telling you about it.

Answer #7

The idiomatic way to do this with Pandas is to use the .sample method of your dataframe to sample all rows without replacement:

df.sample(frac=1)

The frac keyword argument specifies the fraction of rows to return in the random sample, so frac=1 means return all rows (in random order).


Note: If you wish to shuffle your dataframe in-place and reset the index, you could do e.g.

df = df.sample(frac=1).reset_index(drop=True)

Here, specifying drop=True prevents .reset_index from creating a column containing the old index entries.

Follow-up note: Although it may not look like the above operation is in-place, python/pandas is smart enough not to do another malloc for the shuffled object. That is, even though the reference object has changed (by which I mean id(df_old) is not the same as id(df_new)), the underlying C object is still the same. To show that this is indeed the case, you could run a simple memory profiler:

$ python3 -m memory_profiler .	est.py
Filename: .	est.py

Line #    Mem usage    Increment   Line Contents
================================================
     5     68.5 MiB     68.5 MiB   @profile
     6                             def shuffle():
     7    847.8 MiB    779.3 MiB       df = pd.DataFrame(np.random.randn(100, 1000000))
     8    847.9 MiB      0.1 MiB       df = df.sample(frac=1).reset_index(drop=True)

Answer #8

Placing the legend (bbox_to_anchor)

A legend is positioned inside the bounding box of the axes using the loc argument to plt.legend.
E.g. loc="upper right" places the legend in the upper right corner of the bounding box, which by default extents from (0,0) to (1,1) in axes coordinates (or in bounding box notation (x0,y0, width, height)=(0,0,1,1)).

To place the legend outside of the axes bounding box, one may specify a tuple (x0,y0) of axes coordinates of the lower left corner of the legend.

plt.legend(loc=(1.04,0))

A more versatile approach is to manually specify the bounding box into which the legend should be placed, using the bbox_to_anchor argument. One can restrict oneself to supply only the (x0, y0) part of the bbox. This creates a zero span box, out of which the legend will expand in the direction given by the loc argument. E.g.

plt.legend(bbox_to_anchor=(1.04,1), loc="upper left")

places the legend outside the axes, such that the upper left corner of the legend is at position (1.04,1) in axes coordinates.

Further examples are given below, where additionally the interplay between different arguments like mode and ncols are shown.

enter image description here

l1 = plt.legend(bbox_to_anchor=(1.04,1), borderaxespad=0)
l2 = plt.legend(bbox_to_anchor=(1.04,0), loc="lower left", borderaxespad=0)
l3 = plt.legend(bbox_to_anchor=(1.04,0.5), loc="center left", borderaxespad=0)
l4 = plt.legend(bbox_to_anchor=(0,1.02,1,0.2), loc="lower left",
                mode="expand", borderaxespad=0, ncol=3)
l5 = plt.legend(bbox_to_anchor=(1,0), loc="lower right", 
                bbox_transform=fig.transFigure, ncol=3)
l6 = plt.legend(bbox_to_anchor=(0.4,0.8), loc="upper right")

Details about how to interpret the 4-tuple argument to bbox_to_anchor, as in l4, can be found in this question. The mode="expand" expands the legend horizontally inside the bounding box given by the 4-tuple. For a vertically expanded legend, see this question.

Sometimes it may be useful to specify the bounding box in figure coordinates instead of axes coordinates. This is shown in the example l5 from above, where the bbox_transform argument is used to put the legend in the lower left corner of the figure.

Postprocessing

Having placed the legend outside the axes often leads to the undesired situation that it is completely or partially outside the figure canvas.

Solutions to this problem are:

  • Adjust the subplot parameters
    One can adjust the subplot parameters such, that the axes take less space inside the figure (and thereby leave more space to the legend) by using plt.subplots_adjust. E.g.

      plt.subplots_adjust(right=0.7)
    

leaves 30% space on the right-hand side of the figure, where one could place the legend.

  • Tight layout
    Using plt.tight_layout Allows to automatically adjust the subplot parameters such that the elements in the figure sit tight against the figure edges. Unfortunately, the legend is not taken into account in this automatism, but we can supply a rectangle box that the whole subplots area (including labels) will fit into.

      plt.tight_layout(rect=[0,0,0.75,1])
    
  • Saving the figure with bbox_inches = "tight"
    The argument bbox_inches = "tight" to plt.savefig can be used to save the figure such that all artist on the canvas (including the legend) are fit into the saved area. If needed, the figure size is automatically adjusted.

      plt.savefig("output.png", bbox_inches="tight")
    
  • automatically adjusting the subplot params
    A way to automatically adjust the subplot position such that the legend fits inside the canvas without changing the figure size can be found in this answer: Creating figure with exact size and no padding (and legend outside the axes)

Comparison between the cases discussed above:

enter image description here

Alternatives

A figure legend

One may use a legend to the figure instead of the axes, matplotlib.figure.Figure.legend. This has become especially useful for matplotlib version >=2.1, where no special arguments are needed

fig.legend(loc=7) 

to create a legend for all artists in the different axes of the figure. The legend is placed using the loc argument, similar to how it is placed inside an axes, but in reference to the whole figure - hence it will be outside the axes somewhat automatically. What remains is to adjust the subplots such that there is no overlap between the legend and the axes. Here the point "Adjust the subplot parameters" from above will be helpful. An example:

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0,2*np.pi)
colors=["#7aa0c4","#ca82e1" ,"#8bcd50","#e18882"]
fig, axes = plt.subplots(ncols=2)
for i in range(4):
    axes[i//2].plot(x,np.sin(x+i), color=colors[i],label="y=sin(x+{})".format(i))

fig.legend(loc=7)
fig.tight_layout()
fig.subplots_adjust(right=0.75)   
plt.show()

enter image description here

Legend inside dedicated subplot axes

An alternative to using bbox_to_anchor would be to place the legend in its dedicated subplot axes (lax). Since the legend subplot should be smaller than the plot, we may use gridspec_kw={"width_ratios":[4,1]} at axes creation. We can hide the axes lax.axis("off") but still put a legend in. The legend handles and labels need to obtained from the real plot via h,l = ax.get_legend_handles_labels(), and can then be supplied to the legend in the lax subplot, lax.legend(h,l). A complete example is below.

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = 6,2

fig, (ax,lax) = plt.subplots(ncols=2, gridspec_kw={"width_ratios":[4,1]})
ax.plot(x,y, label="y=sin(x)")
....

h,l = ax.get_legend_handles_labels()
lax.legend(h,l, borderaxespad=0)
lax.axis("off")

plt.tight_layout()
plt.show()

This produces a plot, which is visually pretty similar to the plot from above:

enter image description here

We could also use the first axes to place the legend, but use the bbox_transform of the legend axes,

ax.legend(bbox_to_anchor=(0,0,1,1), bbox_transform=lax.transAxes)
lax.axis("off")

In this approach, we do not need to obtain the legend handles externally, but we need to specify the bbox_to_anchor argument.

Further reading and notes:

  • Consider the matplotlib legend guide with some examples of other stuff you want to do with legends.
  • Some example code for placing legends for pie charts may directly be found in answer to this question: Python - Legend overlaps with the pie chart
  • The loc argument can take numbers instead of strings, which make calls shorter, however, they are not very intuitively mapped to each other. Here is the mapping for reference:

enter image description here

Answer #9

The fundamental misunderstanding here is in thinking that range is a generator. It"s not. In fact, it"s not any kind of iterator.

You can tell this pretty easily:

>>> a = range(5)
>>> print(list(a))
[0, 1, 2, 3, 4]
>>> print(list(a))
[0, 1, 2, 3, 4]

If it were a generator, iterating it once would exhaust it:

>>> b = my_crappy_range(5)
>>> print(list(b))
[0, 1, 2, 3, 4]
>>> print(list(b))
[]

What range actually is, is a sequence, just like a list. You can even test this:

>>> import collections.abc
>>> isinstance(a, collections.abc.Sequence)
True

This means it has to follow all the rules of being a sequence:

>>> a[3]         # indexable
3
>>> len(a)       # sized
5
>>> 3 in a       # membership
True
>>> reversed(a)  # reversible
<range_iterator at 0x101cd2360>
>>> a.index(3)   # implements "index"
3
>>> a.count(3)   # implements "count"
1

The difference between a range and a list is that a range is a lazy or dynamic sequence; it doesn"t remember all of its values, it just remembers its start, stop, and step, and creates the values on demand on __getitem__.

(As a side note, if you print(iter(a)), you"ll notice that range uses the same listiterator type as list. How does that work? A listiterator doesn"t use anything special about list except for the fact that it provides a C implementation of __getitem__, so it works fine for range too.)


Now, there"s nothing that says that Sequence.__contains__ has to be constant time—in fact, for obvious examples of sequences like list, it isn"t. But there"s nothing that says it can"t be. And it"s easier to implement range.__contains__ to just check it mathematically ((val - start) % step, but with some extra complexity to deal with negative steps) than to actually generate and test all the values, so why shouldn"t it do it the better way?

But there doesn"t seem to be anything in the language that guarantees this will happen. As Ashwini Chaudhari points out, if you give it a non-integral value, instead of converting to integer and doing the mathematical test, it will fall back to iterating all the values and comparing them one by one. And just because CPython 3.2+ and PyPy 3.x versions happen to contain this optimization, and it"s an obvious good idea and easy to do, there"s no reason that IronPython or NewKickAssPython 3.x couldn"t leave it out. (And in fact, CPython 3.0-3.1 didn"t include it.)


If range actually were a generator, like my_crappy_range, then it wouldn"t make sense to test __contains__ this way, or at least the way it makes sense wouldn"t be obvious. If you"d already iterated the first 3 values, is 1 still in the generator? Should testing for 1 cause it to iterate and consume all the values up to 1 (or up to the first value >= 1)?

Answer #10

Using a for loop, how do I access the loop index, from 1 to 5 in this case?

Use enumerate to get the index with the element as you iterate:

for index, item in enumerate(items):
    print(index, item)

And note that Python"s indexes start at zero, so you would get 0 to 4 with the above. If you want the count, 1 to 5, do this:

count = 0 # in case items is empty and you need it after the loop
for count, item in enumerate(items, start=1):
    print(count, item)

Unidiomatic control flow

What you are asking for is the Pythonic equivalent of the following, which is the algorithm most programmers of lower-level languages would use:

index = 0            # Python"s indexing starts at zero
for item in items:   # Python"s for loops are a "for each" loop 
    print(index, item)
    index += 1

Or in languages that do not have a for-each loop:

index = 0
while index < len(items):
    print(index, items[index])
    index += 1

or sometimes more commonly (but unidiomatically) found in Python:

for index in range(len(items)):
    print(index, items[index])

Use the Enumerate Function

Python"s enumerate function reduces the visual clutter by hiding the accounting for the indexes, and encapsulating the iterable into another iterable (an enumerate object) that yields a two-item tuple of the index and the item that the original iterable would provide. That looks like this:

for index, item in enumerate(items, start=0):   # default is zero
    print(index, item)

This code sample is fairly well the canonical example of the difference between code that is idiomatic of Python and code that is not. Idiomatic code is sophisticated (but not complicated) Python, written in the way that it was intended to be used. Idiomatic code is expected by the designers of the language, which means that usually this code is not just more readable, but also more efficient.

Getting a count

Even if you don"t need indexes as you go, but you need a count of the iterations (sometimes desirable) you can start with 1 and the final number will be your count.

count = 0 # in case items is empty
for count, item in enumerate(items, start=1):   # default is zero
    print(item)

print("there were {0} items printed".format(count))

The count seems to be more what you intend to ask for (as opposed to index) when you said you wanted from 1 to 5.


Breaking it down - a step by step explanation

To break these examples down, say we have a list of items that we want to iterate over with an index:

items = ["a", "b", "c", "d", "e"]

Now we pass this iterable to enumerate, creating an enumerate object:

enumerate_object = enumerate(items) # the enumerate object

We can pull the first item out of this iterable that we would get in a loop with the next function:

iteration = next(enumerate_object) # first iteration from enumerate
print(iteration)

And we see we get a tuple of 0, the first index, and "a", the first item:

(0, "a")

we can use what is referred to as "sequence unpacking" to extract the elements from this two-tuple:

index, item = iteration
#   0,  "a" = (0, "a") # essentially this.

and when we inspect index, we find it refers to the first index, 0, and item refers to the first item, "a".

>>> print(index)
0
>>> print(item)
a

Conclusion

  • Python indexes start at zero
  • To get these indexes from an iterable as you iterate over it, use the enumerate function
  • Using enumerate in the idiomatic way (along with tuple unpacking) creates code that is more readable and maintainable:

So do this:

for index, item in enumerate(items, start=0):   # Python indexes start at zero
    print(index, item)

Absolute Deviation and Absolute Mean Deviation Using NumPy | python: StackOverflow Questions

How do I merge two dictionaries in a single expression (taking union of dictionaries)?

Question by Carl Meyer

I have two Python dictionaries, and I want to write a single expression that returns these two dictionaries, merged (i.e. taking the union). The update() method would be what I need, if it returned its result instead of modifying a dictionary in-place.

>>> x = {"a": 1, "b": 2}
>>> y = {"b": 10, "c": 11}
>>> z = x.update(y)
>>> print(z)
None
>>> x
{"a": 1, "b": 10, "c": 11}

How can I get that final merged dictionary in z, not x?

(To be extra-clear, the last-one-wins conflict-handling of dict.update() is what I"m looking for as well.)

Accessing the index in "for" loops?

Question by Joan Venge

How do I access the index in a for loop like the following?

ints = [8, 23, 45, 12, 78]
for i in ints:
    print("item #{} = {}".format(???, i))

I want to get this output:

item #1 = 8
item #2 = 23
item #3 = 45
item #4 = 12
item #5 = 78

When I loop through it using a for loop, how do I access the loop index, from 1 to 5 in this case?

Iterating over dictionaries using "for" loops

I am a bit puzzled by the following code:

d = {"x": 1, "y": 2, "z": 3} 
for key in d:
    print (key, "corresponds to", d[key])

What I don"t understand is the key portion. How does Python recognize that it needs only to read the key from the dictionary? Is key a special word in Python? Or is it simply a variable?

Using global variables in a function

How can I create or use a global variable in a function?

If I create a global variable in one function, how can I use that global variable in another function? Do I need to store the global variable in a local variable of the function which needs its access?

Manually raising (throwing) an exception in Python

How can I raise an exception in Python so that it can later be caught via an except block?

Calling a function of a module by using its name (a string)

What is the best way to go about calling a function given a string with the function"s name in a Python program. For example, let"s say that I have a module foo, and I have a string whose content is "bar". What is the best way to call foo.bar()?

I need to get the return value of the function, which is why I don"t just use eval. I figured out how to do it by using eval to define a temp function that returns the result of that function call, but I"m hoping that there is a more elegant way to do this.

What is the meaning of single and double underscore before an object name?

Can someone please explain the exact meaning of having single and double leading underscores before an object"s name in Python, and the difference between both?

Also, does that meaning stay the same regardless of whether the object in question is a variable, a function, a method, etc.?

Save plot to image file instead of displaying it using Matplotlib

I am writing a quick-and-dirty script to generate plots on the fly. I am using the code below (from Matplotlib documentation) as a starting point:

from pylab import figure, axes, pie, title, show

# Make a square figure and axes
figure(1, figsize=(6, 6))
ax = axes([0.1, 0.1, 0.8, 0.8])

labels = "Frogs", "Hogs", "Dogs", "Logs"
fracs = [15, 30, 45, 10]

explode = (0, 0.05, 0, 0)
pie(fracs, explode=explode, labels=labels, autopct="%1.1f%%", shadow=True)
title("Raining Hogs and Dogs", bbox={"facecolor": "0.8", "pad": 5})

show()  # Actually, don"t show, just save to foo.png

I don"t want to display the plot on a GUI, instead, I want to save the plot to a file (say foo.png), so that, for example, it can be used in batch scripts. How do I do that?

What are the differences between type() and isinstance()?

What are the differences between these two code fragments?

Using type():

import types

if type(a) is types.DictType:
    do_something()
if type(b) in types.StringTypes:
    do_something_else()

Using isinstance():

if isinstance(a, dict):
    do_something()
if isinstance(b, str) or isinstance(b, unicode):
    do_something_else()

How can I install packages using pip according to the requirements.txt file from a local directory?

Here is the problem:

I have a requirements.txt file that looks like:

BeautifulSoup==3.2.0
Django==1.3
Fabric==1.2.0
Jinja2==2.5.5
PyYAML==3.09
Pygments==1.4
SQLAlchemy==0.7.1
South==0.7.3
amqplib==0.6.1
anyjson==0.3
...

I have a local archive directory containing all the packages + others.

I have created a new virtualenv with

bin/virtualenv testing

Upon activating it, I tried to install the packages according to requirements.txt from the local archive directory.

source bin/activate
pip install -r /path/to/requirements.txt -f file:///path/to/archive/

I got some output that seems to indicate that the installation is fine:

Downloading/unpacking Fabric==1.2.0 (from -r ../testing/requirements.txt (line 3))
  Running setup.py egg_info for package Fabric
    warning: no previously-included files matching "*" found under directory "docs/_build"
    warning: no files found matching "fabfile.py"
Downloading/unpacking South==0.7.3 (from -r ../testing/requirements.txt (line 8))
  Running setup.py egg_info for package South
....

But a later check revealed none of the package is installed properly. I cannot import the package, and none is found in the site-packages directory of my virtualenv. So what went wrong?

Answer #1

The Python 3 range() object doesn"t produce numbers immediately; it is a smart sequence object that produces numbers on demand. All it contains is your start, stop and step values, then as you iterate over the object the next integer is calculated each iteration.

The object also implements the object.__contains__ hook, and calculates if your number is part of its range. Calculating is a (near) constant time operation *. There is never a need to scan through all possible integers in the range.

From the range() object documentation:

The advantage of the range type over a regular list or tuple is that a range object will always take the same (small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and step values, calculating individual items and subranges as needed).

So at a minimum, your range() object would do:

class my_range:
    def __init__(self, start, stop=None, step=1, /):
        if stop is None:
            start, stop = 0, start
        self.start, self.stop, self.step = start, stop, step
        if step < 0:
            lo, hi, step = stop, start, -step
        else:
            lo, hi = start, stop
        self.length = 0 if lo > hi else ((hi - lo - 1) // step) + 1

    def __iter__(self):
        current = self.start
        if self.step < 0:
            while current > self.stop:
                yield current
                current += self.step
        else:
            while current < self.stop:
                yield current
                current += self.step

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        if i < 0:
            i += self.length
        if 0 <= i < self.length:
            return self.start + i * self.step
        raise IndexError("my_range object index out of range")

    def __contains__(self, num):
        if self.step < 0:
            if not (self.stop < num <= self.start):
                return False
        else:
            if not (self.start <= num < self.stop):
                return False
        return (num - self.start) % self.step == 0

This is still missing several things that a real range() supports (such as the .index() or .count() methods, hashing, equality testing, or slicing), but should give you an idea.

I also simplified the __contains__ implementation to only focus on integer tests; if you give a real range() object a non-integer value (including subclasses of int), a slow scan is initiated to see if there is a match, just as if you use a containment test against a list of all the contained values. This was done to continue to support other numeric types that just happen to support equality testing with integers but are not expected to support integer arithmetic as well. See the original Python issue that implemented the containment test.


* Near constant time because Python integers are unbounded and so math operations also grow in time as N grows, making this a O(log N) operation. Since it’s all executed in optimised C code and Python stores integer values in 30-bit chunks, you’d run out of memory before you saw any performance impact due to the size of the integers involved here.

Answer #2

Recommendation for beginners:

This is my personal recommendation for beginners: start by learning virtualenv and pip, tools which work with both Python 2 and 3 and in a variety of situations, and pick up other tools once you start needing them.

PyPI packages not in the standard library:

  • virtualenv is a very popular tool that creates isolated Python environments for Python libraries. If you"re not familiar with this tool, I highly recommend learning it, as it is a very useful tool, and I"ll be making comparisons to it for the rest of this answer.

It works by installing a bunch of files in a directory (eg: env/), and then modifying the PATH environment variable to prefix it with a custom bin directory (eg: env/bin/). An exact copy of the python or python3 binary is placed in this directory, but Python is programmed to look for libraries relative to its path first, in the environment directory. It"s not part of Python"s standard library, but is officially blessed by the PyPA (Python Packaging Authority). Once activated, you can install packages in the virtual environment using pip.

  • pyenv is used to isolate Python versions. For example, you may want to test your code against Python 2.7, 3.6, 3.7 and 3.8, so you"ll need a way to switch between them. Once activated, it prefixes the PATH environment variable with ~/.pyenv/shims, where there are special files matching the Python commands (python, pip). These are not copies of the Python-shipped commands; they are special scripts that decide on the fly which version of Python to run based on the PYENV_VERSION environment variable, or the .python-version file, or the ~/.pyenv/version file. pyenv also makes the process of downloading and installing multiple Python versions easier, using the command pyenv install.

  • pyenv-virtualenv is a plugin for pyenv by the same author as pyenv, to allow you to use pyenv and virtualenv at the same time conveniently. However, if you"re using Python 3.3 or later, pyenv-virtualenv will try to run python -m venv if it is available, instead of virtualenv. You can use virtualenv and pyenv together without pyenv-virtualenv, if you don"t want the convenience features.

  • virtualenvwrapper is a set of extensions to virtualenv (see docs). It gives you commands like mkvirtualenv, lssitepackages, and especially workon for switching between different virtualenv directories. This tool is especially useful if you want multiple virtualenv directories.

  • pyenv-virtualenvwrapper is a plugin for pyenv by the same author as pyenv, to conveniently integrate virtualenvwrapper into pyenv.

  • pipenv aims to combine Pipfile, pip and virtualenv into one command on the command-line. The virtualenv directory typically gets placed in ~/.local/share/virtualenvs/XXX, with XXX being a hash of the path of the project directory. This is different from virtualenv, where the directory is typically in the current working directory. pipenv is meant to be used when developing Python applications (as opposed to libraries). There are alternatives to pipenv, such as poetry, which I won"t list here since this question is only about the packages that are similarly named.

Standard library:

  • pyvenv (not to be confused with pyenv in the previous section) is a script shipped with Python 3 but deprecated in Python 3.6 as it had problems (not to mention the confusing name). In Python 3.6+, the exact equivalent is python3 -m venv.

  • venv is a package shipped with Python 3, which you can run using python3 -m venv (although for some reason some distros separate it out into a separate distro package, such as python3-venv on Ubuntu/Debian). It serves the same purpose as virtualenv, but only has a subset of its features (see a comparison here). virtualenv continues to be more popular than venv, especially since the former supports both Python 2 and 3.

Answer #3

You have four main options for converting types in pandas:

  1. to_numeric() - provides functionality to safely convert non-numeric types (e.g. strings) to a suitable numeric type. (See also to_datetime() and to_timedelta().)

  2. astype() - convert (almost) any type to (almost) any other type (even if it"s not necessarily sensible to do so). Also allows you to convert to categorial types (very useful).

  3. infer_objects() - a utility method to convert object columns holding Python objects to a pandas type if possible.

  4. convert_dtypes() - convert DataFrame columns to the "best possible" dtype that supports pd.NA (pandas" object to indicate a missing value).

Read on for more detailed explanations and usage of each of these methods.


1. to_numeric()

The best way to convert one or more columns of a DataFrame to numeric values is to use pandas.to_numeric().

This function will try to change non-numeric objects (such as strings) into integers or floating point numbers as appropriate.

Basic usage

The input to to_numeric() is a Series or a single column of a DataFrame.

>>> s = pd.Series(["8", 6, "7.5", 3, "0.9"]) # mixed string and numeric values
>>> s
0      8
1      6
2    7.5
3      3
4    0.9
dtype: object

>>> pd.to_numeric(s) # convert everything to float values
0    8.0
1    6.0
2    7.5
3    3.0
4    0.9
dtype: float64

As you can see, a new Series is returned. Remember to assign this output to a variable or column name to continue using it:

# convert Series
my_series = pd.to_numeric(my_series)

# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])

You can also use it to convert multiple columns of a DataFrame via the apply() method:

# convert all columns of DataFrame
df = df.apply(pd.to_numeric) # convert all columns of DataFrame

# convert just columns "a" and "b"
df[["a", "b"]] = df[["a", "b"]].apply(pd.to_numeric)

As long as your values can all be converted, that"s probably all you need.

Error handling

But what if some values can"t be converted to a numeric type?

to_numeric() also takes an errors keyword argument that allows you to force non-numeric values to be NaN, or simply ignore columns containing these values.

Here"s an example using a Series of strings s which has the object dtype:

>>> s = pd.Series(["1", "2", "4.7", "pandas", "10"])
>>> s
0         1
1         2
2       4.7
3    pandas
4        10
dtype: object

The default behaviour is to raise if it can"t convert a value. In this case, it can"t cope with the string "pandas":

>>> pd.to_numeric(s) # or pd.to_numeric(s, errors="raise")
ValueError: Unable to parse string

Rather than fail, we might want "pandas" to be considered a missing/bad numeric value. We can coerce invalid values to NaN as follows using the errors keyword argument:

>>> pd.to_numeric(s, errors="coerce")
0     1.0
1     2.0
2     4.7
3     NaN
4    10.0
dtype: float64

The third option for errors is just to ignore the operation if an invalid value is encountered:

>>> pd.to_numeric(s, errors="ignore")
# the original Series is returned untouched

This last option is particularly useful when you want to convert your entire DataFrame, but don"t not know which of our columns can be converted reliably to a numeric type. In that case just write:

df.apply(pd.to_numeric, errors="ignore")

The function will be applied to each column of the DataFrame. Columns that can be converted to a numeric type will be converted, while columns that cannot (e.g. they contain non-digit strings or dates) will be left alone.

Downcasting

By default, conversion with to_numeric() will give you either a int64 or float64 dtype (or whatever integer width is native to your platform).

That"s usually what you want, but what if you wanted to save some memory and use a more compact dtype, like float32, or int8?

to_numeric() gives you the option to downcast to either "integer", "signed", "unsigned", "float". Here"s an example for a simple series s of integer type:

>>> s = pd.Series([1, 2, -7])
>>> s
0    1
1    2
2   -7
dtype: int64

Downcasting to "integer" uses the smallest possible integer that can hold the values:

>>> pd.to_numeric(s, downcast="integer")
0    1
1    2
2   -7
dtype: int8

Downcasting to "float" similarly picks a smaller than normal floating type:

>>> pd.to_numeric(s, downcast="float")
0    1.0
1    2.0
2   -7.0
dtype: float32

2. astype()

The astype() method enables you to be explicit about the dtype you want your DataFrame or Series to have. It"s very versatile in that you can try and go from one type to the any other.

Basic usage

Just pick a type: you can use a NumPy dtype (e.g. np.int16), some Python types (e.g. bool), or pandas-specific types (like the categorical dtype).

Call the method on the object you want to convert and astype() will try and convert it for you:

# convert all DataFrame columns to the int64 dtype
df = df.astype(int)

# convert column "a" to int64 dtype and "b" to complex type
df = df.astype({"a": int, "b": complex})

# convert Series to float16 type
s = s.astype(np.float16)

# convert Series to Python strings
s = s.astype(str)

# convert Series to categorical type - see docs for more details
s = s.astype("category")

Notice I said "try" - if astype() does not know how to convert a value in the Series or DataFrame, it will raise an error. For example if you have a NaN or inf value you"ll get an error trying to convert it to an integer.

As of pandas 0.20.0, this error can be suppressed by passing errors="ignore". Your original object will be return untouched.

Be careful

astype() is powerful, but it will sometimes convert values "incorrectly". For example:

>>> s = pd.Series([1, 2, -7])
>>> s
0    1
1    2
2   -7
dtype: int64

These are small integers, so how about converting to an unsigned 8-bit type to save memory?

>>> s.astype(np.uint8)
0      1
1      2
2    249
dtype: uint8

The conversion worked, but the -7 was wrapped round to become 249 (i.e. 28 - 7)!

Trying to downcast using pd.to_numeric(s, downcast="unsigned") instead could help prevent this error.


3. infer_objects()

Version 0.21.0 of pandas introduced the method infer_objects() for converting columns of a DataFrame that have an object datatype to a more specific type (soft conversions).

For example, here"s a DataFrame with two columns of object type. One holds actual integers and the other holds strings representing integers:

>>> df = pd.DataFrame({"a": [7, 1, 5], "b": ["3","2","1"]}, dtype="object")
>>> df.dtypes
a    object
b    object
dtype: object

Using infer_objects(), you can change the type of column "a" to int64:

>>> df = df.infer_objects()
>>> df.dtypes
a     int64
b    object
dtype: object

Column "b" has been left alone since its values were strings, not integers. If you wanted to try and force the conversion of both columns to an integer type, you could use df.astype(int) instead.


4. convert_dtypes()

Version 1.0 and above includes a method convert_dtypes() to convert Series and DataFrame columns to the best possible dtype that supports the pd.NA missing value.

Here "best possible" means the type most suited to hold the values. For example, this a pandas integer type if all of the values are integers (or missing values): an object column of Python integer objects is converted to Int64, a column of NumPy int32 values will become the pandas dtype Int32.

With our object DataFrame df, we get the following result:

>>> df.convert_dtypes().dtypes                                             
a     Int64
b    string
dtype: object

Since column "a" held integer values, it was converted to the Int64 type (which is capable of holding missing values, unlike int64).

Column "b" contained string objects, so was changed to pandas" string dtype.

By default, this method will infer the type from object values in each column. We can change this by passing infer_objects=False:

>>> df.convert_dtypes(infer_objects=False).dtypes                          
a    object
b    string
dtype: object

Now column "a" remained an object column: pandas knows it can be described as an "integer" column (internally it ran infer_dtype) but didn"t infer exactly what dtype of integer it should have so did not convert it. Column "b" was again converted to "string" dtype as it was recognised as holding "string" values.

Answer #4

Since this question was asked in 2010, there has been real simplification in how to do simple multithreading with Python with map and pool.

The code below comes from an article/blog post that you should definitely check out (no affiliation) - Parallelism in one line: A Better Model for Day to Day Threading Tasks. I"ll summarize below - it ends up being just a few lines of code:

from multiprocessing.dummy import Pool as ThreadPool
pool = ThreadPool(4)
results = pool.map(my_function, my_array)

Which is the multithreaded version of:

results = []
for item in my_array:
    results.append(my_function(item))

Description

Map is a cool little function, and the key to easily injecting parallelism into your Python code. For those unfamiliar, map is something lifted from functional languages like Lisp. It is a function which maps another function over a sequence.

Map handles the iteration over the sequence for us, applies the function, and stores all of the results in a handy list at the end.

Enter image description here


Implementation

Parallel versions of the map function are provided by two libraries:multiprocessing, and also its little known, but equally fantastic step child:multiprocessing.dummy.

multiprocessing.dummy is exactly the same as multiprocessing module, but uses threads instead (an important distinction - use multiple processes for CPU-intensive tasks; threads for (and during) I/O):

multiprocessing.dummy replicates the API of multiprocessing, but is no more than a wrapper around the threading module.

import urllib2
from multiprocessing.dummy import Pool as ThreadPool

urls = [
  "http://www.python.org",
  "http://www.python.org/about/",
  "http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html",
  "http://www.python.org/doc/",
  "http://www.python.org/download/",
  "http://www.python.org/getit/",
  "http://www.python.org/community/",
  "https://wiki.python.org/moin/",
]

# Make the Pool of workers
pool = ThreadPool(4)

# Open the URLs in their own threads
# and return the results
results = pool.map(urllib2.urlopen, urls)

# Close the pool and wait for the work to finish
pool.close()
pool.join()

And the timing results:

Single thread:   14.4 seconds
       4 Pool:   3.1 seconds
       8 Pool:   1.4 seconds
      13 Pool:   1.3 seconds

Passing multiple arguments (works like this only in Python 3.3 and later):

To pass multiple arrays:

results = pool.starmap(function, zip(list_a, list_b))

Or to pass a constant and an array:

results = pool.starmap(function, zip(itertools.repeat(constant), list_a))

If you are using an earlier version of Python, you can pass multiple arguments via this workaround).

(Thanks to user136036 for the helpful comment.)

Answer #5

How to iterate over rows in a DataFrame in Pandas?

Answer: DON"T*!

Iteration in Pandas is an anti-pattern and is something you should only do when you have exhausted every other option. You should not use any function with "iter" in its name for more than a few thousand rows or you will have to get used to a lot of waiting.

Do you want to print a DataFrame? Use DataFrame.to_string().

Do you want to compute something? In that case, search for methods in this order (list modified from here):

  1. Vectorization
  2. Cython routines
  3. List Comprehensions (vanilla for loop)
  4. DataFrame.apply(): i)  Reductions that can be performed in Cython, ii) Iteration in Python space
  5. DataFrame.itertuples() and iteritems()
  6. DataFrame.iterrows()

iterrows and itertuples (both receiving many votes in answers to this question) should be used in very rare circumstances, such as generating row objects/nametuples for sequential processing, which is really the only thing these functions are useful for.

Appeal to Authority

The documentation page on iteration has a huge red warning box that says:

Iterating through pandas objects is generally slow. In many cases, iterating manually over the rows is not needed [...].

* It"s actually a little more complicated than "don"t". df.iterrows() is the correct answer to this question, but "vectorize your ops" is the better one. I will concede that there are circumstances where iteration cannot be avoided (for example, some operations where the result depends on the value computed for the previous row). However, it takes some familiarity with the library to know when. If you"re not sure whether you need an iterative solution, you probably don"t. PS: To know more about my rationale for writing this answer, skip to the very bottom.


Faster than Looping: Vectorization, Cython

A good number of basic operations and computations are "vectorised" by pandas (either through NumPy, or through Cythonized functions). This includes arithmetic, comparisons, (most) reductions, reshaping (such as pivoting), joins, and groupby operations. Look through the documentation on Essential Basic Functionality to find a suitable vectorised method for your problem.

If none exists, feel free to write your own using custom Cython extensions.


Next Best Thing: List Comprehensions*

List comprehensions should be your next port of call if 1) there is no vectorized solution available, 2) performance is important, but not important enough to go through the hassle of cythonizing your code, and 3) you"re trying to perform elementwise transformation on your code. There is a good amount of evidence to suggest that list comprehensions are sufficiently fast (and even sometimes faster) for many common Pandas tasks.

The formula is simple,

# Iterating over one column - `f` is some function that processes your data
result = [f(x) for x in df["col"]]
# Iterating over two columns, use `zip`
result = [f(x, y) for x, y in zip(df["col1"], df["col2"])]
# Iterating over multiple columns - same data type
result = [f(row[0], ..., row[n]) for row in df[["col1", ...,"coln"]].to_numpy()]
# Iterating over multiple columns - differing data type
result = [f(row[0], ..., row[n]) for row in zip(df["col1"], ..., df["coln"])]

If you can encapsulate your business logic into a function, you can use a list comprehension that calls it. You can make arbitrarily complex things work through the simplicity and speed of raw Python code.

Caveats

List comprehensions assume that your data is easy to work with - what that means is your data types are consistent and you don"t have NaNs, but this cannot always be guaranteed.

  1. The first one is more obvious, but when dealing with NaNs, prefer in-built pandas methods if they exist (because they have much better corner-case handling logic), or ensure your business logic includes appropriate NaN handling logic.
  2. When dealing with mixed data types you should iterate over zip(df["A"], df["B"], ...) instead of df[["A", "B"]].to_numpy() as the latter implicitly upcasts data to the most common type. As an example if A is numeric and B is string, to_numpy() will cast the entire array to string, which may not be what you want. Fortunately zipping your columns together is the most straightforward workaround to this.

*Your mileage may vary for the reasons outlined in the Caveats section above.


An Obvious Example

Let"s demonstrate the difference with a simple example of adding two pandas columns A + B. This is a vectorizable operaton, so it will be easy to contrast the performance of the methods discussed above.

Benchmarking code, for your reference. The line at the bottom measures a function written in numpandas, a style of Pandas that mixes heavily with NumPy to squeeze out maximum performance. Writing numpandas code should be avoided unless you know what you"re doing. Stick to the API where you can (i.e., prefer vec over vec_numpy).

I should mention, however, that it isn"t always this cut and dry. Sometimes the answer to "what is the best method for an operation" is "it depends on your data". My advice is to test out different approaches on your data before settling on one.


Further Reading

* Pandas string methods are "vectorized" in the sense that they are specified on the series but operate on each element. The underlying mechanisms are still iterative, because string operations are inherently hard to vectorize.


Why I Wrote this Answer

A common trend I notice from new users is to ask questions of the form "How can I iterate over my df to do X?". Showing code that calls iterrows() while doing something inside a for loop. Here is why. A new user to the library who has not been introduced to the concept of vectorization will likely envision the code that solves their problem as iterating over their data to do something. Not knowing how to iterate over a DataFrame, the first thing they do is Google it and end up here, at this question. They then see the accepted answer telling them how to, and they close their eyes and run this code without ever first questioning if iteration is not the right thing to do.

The aim of this answer is to help new users understand that iteration is not necessarily the solution to every problem, and that better, faster and more idiomatic solutions could exist, and that it is worth investing time in exploring them. I"m not trying to start a war of iteration vs. vectorization, but I want new users to be informed when developing solutions to their problems with this library.

Answer #6

In Python, what is the purpose of __slots__ and what are the cases one should avoid this?

TLDR:

The special attribute __slots__ allows you to explicitly state which instance attributes you expect your object instances to have, with the expected results:

  1. faster attribute access.
  2. space savings in memory.

The space savings is from

  1. Storing value references in slots instead of __dict__.
  2. Denying __dict__ and __weakref__ creation if parent classes deny them and you declare __slots__.

Quick Caveats

Small caveat, you should only declare a particular slot one time in an inheritance tree. For example:

class Base:
    __slots__ = "foo", "bar"

class Right(Base):
    __slots__ = "baz", 

class Wrong(Base):
    __slots__ = "foo", "bar", "baz"        # redundant foo and bar

Python doesn"t object when you get this wrong (it probably should), problems might not otherwise manifest, but your objects will take up more space than they otherwise should. Python 3.8:

>>> from sys import getsizeof
>>> getsizeof(Right()), getsizeof(Wrong())
(56, 72)

This is because the Base"s slot descriptor has a slot separate from the Wrong"s. This shouldn"t usually come up, but it could:

>>> w = Wrong()
>>> w.foo = "foo"
>>> Base.foo.__get__(w)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: foo
>>> Wrong.foo.__get__(w)
"foo"

The biggest caveat is for multiple inheritance - multiple "parent classes with nonempty slots" cannot be combined.

To accommodate this restriction, follow best practices: Factor out all but one or all parents" abstraction which their concrete class respectively and your new concrete class collectively will inherit from - giving the abstraction(s) empty slots (just like abstract base classes in the standard library).

See section on multiple inheritance below for an example.

Requirements:

  • To have attributes named in __slots__ to actually be stored in slots instead of a __dict__, a class must inherit from object (automatic in Python 3, but must be explicit in Python 2).

  • To prevent the creation of a __dict__, you must inherit from object and all classes in the inheritance must declare __slots__ and none of them can have a "__dict__" entry.

There are a lot of details if you wish to keep reading.

Why use __slots__: Faster attribute access.

The creator of Python, Guido van Rossum, states that he actually created __slots__ for faster attribute access.

It is trivial to demonstrate measurably significant faster access:

import timeit

class Foo(object): __slots__ = "foo",

class Bar(object): pass

slotted = Foo()
not_slotted = Bar()

def get_set_delete_fn(obj):
    def get_set_delete():
        obj.foo = "foo"
        obj.foo
        del obj.foo
    return get_set_delete

and

>>> min(timeit.repeat(get_set_delete_fn(slotted)))
0.2846834529991611
>>> min(timeit.repeat(get_set_delete_fn(not_slotted)))
0.3664822799983085

The slotted access is almost 30% faster in Python 3.5 on Ubuntu.

>>> 0.3664822799983085 / 0.2846834529991611
1.2873325658284342

In Python 2 on Windows I have measured it about 15% faster.

Why use __slots__: Memory Savings

Another purpose of __slots__ is to reduce the space in memory that each object instance takes up.

My own contribution to the documentation clearly states the reasons behind this:

The space saved over using __dict__ can be significant.

SQLAlchemy attributes a lot of memory savings to __slots__.

To verify this, using the Anaconda distribution of Python 2.7 on Ubuntu Linux, with guppy.hpy (aka heapy) and sys.getsizeof, the size of a class instance without __slots__ declared, and nothing else, is 64 bytes. That does not include the __dict__. Thank you Python for lazy evaluation again, the __dict__ is apparently not called into existence until it is referenced, but classes without data are usually useless. When called into existence, the __dict__ attribute is a minimum of 280 bytes additionally.

In contrast, a class instance with __slots__ declared to be () (no data) is only 16 bytes, and 56 total bytes with one item in slots, 64 with two.

For 64 bit Python, I illustrate the memory consumption in bytes in Python 2.7 and 3.6, for __slots__ and __dict__ (no slots defined) for each point where the dict grows in 3.6 (except for 0, 1, and 2 attributes):

       Python 2.7             Python 3.6
attrs  __slots__  __dict__*   __slots__  __dict__* | *(no slots defined)
none   16         56 + 272†   16         56 + 112† | †if __dict__ referenced
one    48         56 + 272    48         56 + 112
two    56         56 + 272    56         56 + 112
six    88         56 + 1040   88         56 + 152
11     128        56 + 1040   128        56 + 240
22     216        56 + 3344   216        56 + 408     
43     384        56 + 3344   384        56 + 752

So, in spite of smaller dicts in Python 3, we see how nicely __slots__ scale for instances to save us memory, and that is a major reason you would want to use __slots__.

Just for completeness of my notes, note that there is a one-time cost per slot in the class"s namespace of 64 bytes in Python 2, and 72 bytes in Python 3, because slots use data descriptors like properties, called "members".

>>> Foo.foo
<member "foo" of "Foo" objects>
>>> type(Foo.foo)
<class "member_descriptor">
>>> getsizeof(Foo.foo)
72

Demonstration of __slots__:

To deny the creation of a __dict__, you must subclass object. Everything subclasses object in Python 3, but in Python 2 you had to be explicit:

class Base(object): 
    __slots__ = ()

now:

>>> b = Base()
>>> b.a = "a"
Traceback (most recent call last):
  File "<pyshell#38>", line 1, in <module>
    b.a = "a"
AttributeError: "Base" object has no attribute "a"

Or subclass another class that defines __slots__

class Child(Base):
    __slots__ = ("a",)

and now:

c = Child()
c.a = "a"

but:

>>> c.b = "b"
Traceback (most recent call last):
  File "<pyshell#42>", line 1, in <module>
    c.b = "b"
AttributeError: "Child" object has no attribute "b"

To allow __dict__ creation while subclassing slotted objects, just add "__dict__" to the __slots__ (note that slots are ordered, and you shouldn"t repeat slots that are already in parent classes):

class SlottedWithDict(Child): 
    __slots__ = ("__dict__", "b")

swd = SlottedWithDict()
swd.a = "a"
swd.b = "b"
swd.c = "c"

and

>>> swd.__dict__
{"c": "c"}

Or you don"t even need to declare __slots__ in your subclass, and you will still use slots from the parents, but not restrict the creation of a __dict__:

class NoSlots(Child): pass
ns = NoSlots()
ns.a = "a"
ns.b = "b"

And:

>>> ns.__dict__
{"b": "b"}

However, __slots__ may cause problems for multiple inheritance:

class BaseA(object): 
    __slots__ = ("a",)

class BaseB(object): 
    __slots__ = ("b",)

Because creating a child class from parents with both non-empty slots fails:

>>> class Child(BaseA, BaseB): __slots__ = ()
Traceback (most recent call last):
  File "<pyshell#68>", line 1, in <module>
    class Child(BaseA, BaseB): __slots__ = ()
TypeError: Error when calling the metaclass bases
    multiple bases have instance lay-out conflict

If you run into this problem, You could just remove __slots__ from the parents, or if you have control of the parents, give them empty slots, or refactor to abstractions:

from abc import ABC

class AbstractA(ABC):
    __slots__ = ()

class BaseA(AbstractA): 
    __slots__ = ("a",)

class AbstractB(ABC):
    __slots__ = ()

class BaseB(AbstractB): 
    __slots__ = ("b",)

class Child(AbstractA, AbstractB): 
    __slots__ = ("a", "b")

c = Child() # no problem!

Add "__dict__" to __slots__ to get dynamic assignment:

class Foo(object):
    __slots__ = "bar", "baz", "__dict__"

and now:

>>> foo = Foo()
>>> foo.boink = "boink"

So with "__dict__" in slots we lose some of the size benefits with the upside of having dynamic assignment and still having slots for the names we do expect.

When you inherit from an object that isn"t slotted, you get the same sort of semantics when you use __slots__ - names that are in __slots__ point to slotted values, while any other values are put in the instance"s __dict__.

Avoiding __slots__ because you want to be able to add attributes on the fly is actually not a good reason - just add "__dict__" to your __slots__ if this is required.

You can similarly add __weakref__ to __slots__ explicitly if you need that feature.

Set to empty tuple when subclassing a namedtuple:

The namedtuple builtin make immutable instances that are very lightweight (essentially, the size of tuples) but to get the benefits, you need to do it yourself if you subclass them:

from collections import namedtuple
class MyNT(namedtuple("MyNT", "bar baz")):
    """MyNT is an immutable and lightweight object"""
    __slots__ = ()

usage:

>>> nt = MyNT("bar", "baz")
>>> nt.bar
"bar"
>>> nt.baz
"baz"

And trying to assign an unexpected attribute raises an AttributeError because we have prevented the creation of __dict__:

>>> nt.quux = "quux"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: "MyNT" object has no attribute "quux"

You can allow __dict__ creation by leaving off __slots__ = (), but you can"t use non-empty __slots__ with subtypes of tuple.

Biggest Caveat: Multiple inheritance

Even when non-empty slots are the same for multiple parents, they cannot be used together:

class Foo(object): 
    __slots__ = "foo", "bar"
class Bar(object):
    __slots__ = "foo", "bar" # alas, would work if empty, i.e. ()

>>> class Baz(Foo, Bar): pass
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Error when calling the metaclass bases
    multiple bases have instance lay-out conflict

Using an empty __slots__ in the parent seems to provide the most flexibility, allowing the child to choose to prevent or allow (by adding "__dict__" to get dynamic assignment, see section above) the creation of a __dict__:

class Foo(object): __slots__ = ()
class Bar(object): __slots__ = ()
class Baz(Foo, Bar): __slots__ = ("foo", "bar")
b = Baz()
b.foo, b.bar = "foo", "bar"

You don"t have to have slots - so if you add them, and remove them later, it shouldn"t cause any problems.

Going out on a limb here: If you"re composing mixins or using abstract base classes, which aren"t intended to be instantiated, an empty __slots__ in those parents seems to be the best way to go in terms of flexibility for subclassers.

To demonstrate, first, let"s create a class with code we"d like to use under multiple inheritance

class AbstractBase:
    __slots__ = ()
    def __init__(self, a, b):
        self.a = a
        self.b = b
    def __repr__(self):
        return f"{type(self).__name__}({repr(self.a)}, {repr(self.b)})"

We could use the above directly by inheriting and declaring the expected slots:

class Foo(AbstractBase):
    __slots__ = "a", "b"

But we don"t care about that, that"s trivial single inheritance, we need another class we might also inherit from, maybe with a noisy attribute:

class AbstractBaseC:
    __slots__ = ()
    @property
    def c(self):
        print("getting c!")
        return self._c
    @c.setter
    def c(self, arg):
        print("setting c!")
        self._c = arg

Now if both bases had nonempty slots, we couldn"t do the below. (In fact, if we wanted, we could have given AbstractBase nonempty slots a and b, and left them out of the below declaration - leaving them in would be wrong):

class Concretion(AbstractBase, AbstractBaseC):
    __slots__ = "a b _c".split()

And now we have functionality from both via multiple inheritance, and can still deny __dict__ and __weakref__ instantiation:

>>> c = Concretion("a", "b")
>>> c.c = c
setting c!
>>> c.c
getting c!
Concretion("a", "b")
>>> c.d = "d"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: "Concretion" object has no attribute "d"

Other cases to avoid slots:

  • Avoid them when you want to perform __class__ assignment with another class that doesn"t have them (and you can"t add them) unless the slot layouts are identical. (I am very interested in learning who is doing this and why.)
  • Avoid them if you want to subclass variable length builtins like long, tuple, or str, and you want to add attributes to them.
  • Avoid them if you insist on providing default values via class attributes for instance variables.

You may be able to tease out further caveats from the rest of the __slots__ documentation (the 3.7 dev docs are the most current), which I have made significant recent contributions to.

Critiques of other answers

The current top answers cite outdated information and are quite hand-wavy and miss the mark in some important ways.

Do not "only use __slots__ when instantiating lots of objects"

I quote:

"You would want to use __slots__ if you are going to instantiate a lot (hundreds, thousands) of objects of the same class."

Abstract Base Classes, for example, from the collections module, are not instantiated, yet __slots__ are declared for them.

Why?

If a user wishes to deny __dict__ or __weakref__ creation, those things must not be available in the parent classes.

__slots__ contributes to reusability when creating interfaces or mixins.

It is true that many Python users aren"t writing for reusability, but when you are, having the option to deny unnecessary space usage is valuable.

__slots__ doesn"t break pickling

When pickling a slotted object, you may find it complains with a misleading TypeError:

>>> pickle.loads(pickle.dumps(f))
TypeError: a class that defines __slots__ without defining __getstate__ cannot be pickled

This is actually incorrect. This message comes from the oldest protocol, which is the default. You can select the latest protocol with the -1 argument. In Python 2.7 this would be 2 (which was introduced in 2.3), and in 3.6 it is 4.

>>> pickle.loads(pickle.dumps(f, -1))
<__main__.Foo object at 0x1129C770>

in Python 2.7:

>>> pickle.loads(pickle.dumps(f, 2))
<__main__.Foo object at 0x1129C770>

in Python 3.6

>>> pickle.loads(pickle.dumps(f, 4))
<__main__.Foo object at 0x1129C770>

So I would keep this in mind, as it is a solved problem.

Critique of the (until Oct 2, 2016) accepted answer

The first paragraph is half short explanation, half predictive. Here"s the only part that actually answers the question

The proper use of __slots__ is to save space in objects. Instead of having a dynamic dict that allows adding attributes to objects at anytime, there is a static structure which does not allow additions after creation. This saves the overhead of one dict for every object that uses slots

The second half is wishful thinking, and off the mark:

While this is sometimes a useful optimization, it would be completely unnecessary if the Python interpreter was dynamic enough so that it would only require the dict when there actually were additions to the object.

Python actually does something similar to this, only creating the __dict__ when it is accessed, but creating lots of objects with no data is fairly ridiculous.

The second paragraph oversimplifies and misses actual reasons to avoid __slots__. The below is not a real reason to avoid slots (for actual reasons, see the rest of my answer above.):

They change the behavior of the objects that have slots in a way that can be abused by control freaks and static typing weenies.

It then goes on to discuss other ways of accomplishing that perverse goal with Python, not discussing anything to do with __slots__.

The third paragraph is more wishful thinking. Together it is mostly off-the-mark content that the answerer didn"t even author and contributes to ammunition for critics of the site.

Memory usage evidence

Create some normal objects and slotted objects:

>>> class Foo(object): pass
>>> class Bar(object): __slots__ = ()

Instantiate a million of them:

>>> foos = [Foo() for f in xrange(1000000)]
>>> bars = [Bar() for b in xrange(1000000)]

Inspect with guppy.hpy().heap():

>>> guppy.hpy().heap()
Partition of a set of 2028259 objects. Total size = 99763360 bytes.
 Index  Count   %     Size   % Cumulative  % Kind (class / dict of class)
     0 1000000  49 64000000  64  64000000  64 __main__.Foo
     1     169   0 16281480  16  80281480  80 list
     2 1000000  49 16000000  16  96281480  97 __main__.Bar
     3   12284   1   987472   1  97268952  97 str
...

Access the regular objects and their __dict__ and inspect again:

>>> for f in foos:
...     f.__dict__
>>> guppy.hpy().heap()
Partition of a set of 3028258 objects. Total size = 379763480 bytes.
 Index  Count   %      Size    % Cumulative  % Kind (class / dict of class)
     0 1000000  33 280000000  74 280000000  74 dict of __main__.Foo
     1 1000000  33  64000000  17 344000000  91 __main__.Foo
     2     169   0  16281480   4 360281480  95 list
     3 1000000  33  16000000   4 376281480  99 __main__.Bar
     4   12284   0    987472   0 377268952  99 str
...

This is consistent with the history of Python, from Unifying types and classes in Python 2.2

If you subclass a built-in type, extra space is automatically added to the instances to accomodate __dict__ and __weakrefs__. (The __dict__ is not initialized until you use it though, so you shouldn"t worry about the space occupied by an empty dictionary for each instance you create.) If you don"t need this extra space, you can add the phrase "__slots__ = []" to your class.

Answer #7

os.listdir() - list in the current directory

With listdir in os module you get the files and the folders in the current dir

 import os
 arr = os.listdir()
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

Looking in a directory

arr = os.listdir("c:\files")

glob from glob

with glob you can specify a type of file to list like this

import glob

txtfiles = []
for file in glob.glob("*.txt"):
    txtfiles.append(file)

glob in a list comprehension

mylist = [f for f in glob.glob("*.txt")]

get the full path of only files in the current directory

import os
from os import listdir
from os.path import isfile, join

cwd = os.getcwd()
onlyfiles = [os.path.join(cwd, f) for f in os.listdir(cwd) if 
os.path.isfile(os.path.join(cwd, f))]
print(onlyfiles) 

["G:\getfilesname\getfilesname.py", "G:\getfilesname\example.txt"]

Getting the full path name with os.path.abspath

You get the full path in return

 import os
 files_path = [os.path.abspath(x) for x in os.listdir()]
 print(files_path)
 
 ["F:\documentiapplications.txt", "F:\documenticollections.txt"]

Walk: going through sub directories

os.walk returns the root, the directories list and the files list, that is why I unpacked them in r, d, f in the for loop; it, then, looks for other files and directories in the subfolders of the root and so on until there are no subfolders.

import os

# Getting the current work directory (cwd)
thisdir = os.getcwd()

# r=root, d=directories, f = files
for r, d, f in os.walk(thisdir):
    for file in f:
        if file.endswith(".docx"):
            print(os.path.join(r, file))

os.listdir(): get files in the current directory (Python 2)

In Python 2, if you want the list of the files in the current directory, you have to give the argument as "." or os.getcwd() in the os.listdir method.

 import os
 arr = os.listdir(".")
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

To go up in the directory tree

# Method 1
x = os.listdir("..")

# Method 2
x= os.listdir("/")

Get files: os.listdir() in a particular directory (Python 2 and 3)

 import os
 arr = os.listdir("F:\python")
 print(arr)
 
 >>> ["$RECYCLE.BIN", "work.txt", "3ebooks.txt", "documents"]

Get files of a particular subdirectory with os.listdir()

import os

x = os.listdir("./content")

os.walk(".") - current directory

 import os
 arr = next(os.walk("."))[2]
 print(arr)
 
 >>> ["5bs_Turismo1.pdf", "5bs_Turismo1.pptx", "esperienza.txt"]

next(os.walk(".")) and os.path.join("dir", "file")

 import os
 arr = []
 for d,r,f in next(os.walk("F:\_python")):
     for file in f:
         arr.append(os.path.join(r,file))

 for f in arr:
     print(files)

>>> F:\_python\dict_class.py
>>> F:\_python\programmi.txt

next(os.walk("F:\") - get the full path - list comprehension

 [os.path.join(r,file) for r,d,f in next(os.walk("F:\_python")) for file in f]
 
 >>> ["F:\_python\dict_class.py", "F:\_python\programmi.txt"]

os.walk - get full path - all files in sub dirs**

x = [os.path.join(r,file) for r,d,f in os.walk("F:\_python") for file in f]
print(x)

>>> ["F:\_python\dict.py", "F:\_python\progr.txt", "F:\_python\readl.py"]

os.listdir() - get only txt files

 arr_txt = [x for x in os.listdir() if x.endswith(".txt")]
 print(arr_txt)
 
 >>> ["work.txt", "3ebooks.txt"]

Using glob to get the full path of the files

If I should need the absolute path of the files:

from path import path
from glob import glob
x = [path(f).abspath() for f in glob("F:\*.txt")]
for f in x:
    print(f)

>>> F:acquistionline.txt
>>> F:acquisti_2018.txt
>>> F:ootstrap_jquery_ecc.txt

Using os.path.isfile to avoid directories in the list

import os.path
listOfFiles = [f for f in os.listdir() if os.path.isfile(f)]
print(listOfFiles)

>>> ["a simple game.py", "data.txt", "decorator.py"]

Using pathlib from Python 3.4

import pathlib

flist = []
for p in pathlib.Path(".").iterdir():
    if p.is_file():
        print(p)
        flist.append(p)

 >>> error.PNG
 >>> exemaker.bat
 >>> guiprova.mp3
 >>> setup.py
 >>> speak_gui2.py
 >>> thumb.PNG

With list comprehension:

flist = [p for p in pathlib.Path(".").iterdir() if p.is_file()]

Alternatively, use pathlib.Path() instead of pathlib.Path(".")

Use glob method in pathlib.Path()

import pathlib

py = pathlib.Path().glob("*.py")
for file in py:
    print(file)

>>> stack_overflow_list.py
>>> stack_overflow_list_tkinter.py

Get all and only files with os.walk

import os
x = [i[2] for i in os.walk(".")]
y=[]
for t in x:
    for f in t:
        y.append(f)
print(y)

>>> ["append_to_list.py", "data.txt", "data1.txt", "data2.txt", "data_180617", "os_walk.py", "READ2.py", "read_data.py", "somma_defaltdic.py", "substitute_words.py", "sum_data.py", "data.txt", "data1.txt", "data_180617"]

Get only files with next and walk in a directory

 import os
 x = next(os.walk("F://python"))[2]
 print(x)
 
 >>> ["calculator.bat","calculator.py"]

Get only directories with next and walk in a directory

 import os
 next(os.walk("F://python"))[1] # for the current dir use (".")
 
 >>> ["python3","others"]

Get all the subdir names with walk

for r,d,f in os.walk("F:\_python"):
    for dirs in d:
        print(dirs)

>>> .vscode
>>> pyexcel
>>> pyschool.py
>>> subtitles
>>> _metaprogramming
>>> .ipynb_checkpoints

os.scandir() from Python 3.5 and greater

import os
x = [f.name for f in os.scandir() if f.is_file()]
print(x)

>>> ["calculator.bat","calculator.py"]

# Another example with scandir (a little variation from docs.python.org)
# This one is more efficient than os.listdir.
# In this case, it shows the files only in the current directory
# where the script is executed.

import os
with os.scandir() as i:
    for entry in i:
        if entry.is_file():
            print(entry.name)

>>> ebookmaker.py
>>> error.PNG
>>> exemaker.bat
>>> guiprova.mp3
>>> setup.py
>>> speakgui4.py
>>> speak_gui2.py
>>> speak_gui3.py
>>> thumb.PNG

Examples:

Ex. 1: How many files are there in the subdirectories?

In this example, we look for the number of files that are included in all the directory and its subdirectories.

import os

def count(dir, counter=0):
    "returns number of files in dir and subdirs"
    for pack in os.walk(dir):
        for f in pack[2]:
            counter += 1
    return dir + " : " + str(counter) + "files"

print(count("F:\python"))

>>> "F:\python" : 12057 files"

Ex.2: How to copy all files from a directory to another?

A script to make order in your computer finding all files of a type (default: pptx) and copying them in a new folder.

import os
import shutil
from path import path

destination = "F:\file_copied"
# os.makedirs(destination)

def copyfile(dir, filetype="pptx", counter=0):
    "Searches for pptx (or other - pptx is the default) files and copies them"
    for pack in os.walk(dir):
        for f in pack[2]:
            if f.endswith(filetype):
                fullpath = pack[0] + "\" + f
                print(fullpath)
                shutil.copy(fullpath, destination)
                counter += 1
    if counter > 0:
        print("-" * 30)
        print("	==> Found in: `" + dir + "` : " + str(counter) + " files
")

for dir in os.listdir():
    "searches for folders that starts with `_`"
    if dir[0] == "_":
        # copyfile(dir, filetype="pdf")
        copyfile(dir, filetype="txt")


>>> _compiti18Compito Contabilità 1conti.txt
>>> _compiti18Compito Contabilità 1modula4.txt
>>> _compiti18Compito Contabilità 1moduloa4.txt
>>> ------------------------
>>> ==> Found in: `_compiti18` : 3 files

Ex. 3: How to get all the files in a txt file

In case you want to create a txt file with all the file names:

import os
mylist = ""
with open("filelist.txt", "w", encoding="utf-8") as file:
    for eachfile in os.listdir():
        mylist += eachfile + "
"
    file.write(mylist)

Example: txt with all the files of an hard drive

"""
We are going to save a txt file with all the files in your directory.
We will use the function walk()
"""

import os

# see all the methods of os
# print(*dir(os), sep=", ")
listafile = []
percorso = []
with open("lista_file.txt", "w", encoding="utf-8") as testo:
    for root, dirs, files in os.walk("D:\"):
        for file in files:
            listafile.append(file)
            percorso.append(root + "\" + file)
            testo.write(file + "
")
listafile.sort()
print("N. of files", len(listafile))
with open("lista_file_ordinata.txt", "w", encoding="utf-8") as testo_ordinato:
    for file in listafile:
        testo_ordinato.write(file + "
")

with open("percorso.txt", "w", encoding="utf-8") as file_percorso:
    for file in percorso:
        file_percorso.write(file + "
")

os.system("lista_file.txt")
os.system("lista_file_ordinata.txt")
os.system("percorso.txt")

All the file of C: in one text file

This is a shorter version of the previous code. Change the folder where to start finding the files if you need to start from another position. This code generate a 50 mb on text file on my computer with something less then 500.000 lines with files with the complete path.

import os

with open("file.txt", "w", encoding="utf-8") as filewrite:
    for r, d, f in os.walk("C:\"):
        for file in f:
            filewrite.write(f"{r + file}
")

How to write a file with all paths in a folder of a type

With this function you can create a txt file that will have the name of a type of file that you look for (ex. pngfile.txt) with all the full path of all the files of that type. It can be useful sometimes, I think.

import os

def searchfiles(extension=".ttf", folder="H:\"):
    "Create a txt file with all the file of a type"
    with open(extension[1:] + "file.txt", "w", encoding="utf-8") as filewrite:
        for r, d, f in os.walk(folder):
            for file in f:
                if file.endswith(extension):
                    filewrite.write(f"{r + file}
")

# looking for png file (fonts) in the hard disk H:
searchfiles(".png", "H:\")

>>> H:4bs_18Dolphins5.png
>>> H:4bs_18Dolphins6.png
>>> H:4bs_18Dolphins7.png
>>> H:5_18marketing htmlassetsimageslogo2.png
>>> H:7z001.png
>>> H:7z002.png

(New) Find all files and open them with tkinter GUI

I just wanted to add in this 2019 a little app to search for all files in a dir and be able to open them by doubleclicking on the name of the file in the list. enter image description here

import tkinter as tk
import os

def searchfiles(extension=".txt", folder="H:\"):
    "insert all files in the listbox"
    for r, d, f in os.walk(folder):
        for file in f:
            if file.endswith(extension):
                lb.insert(0, r + "\" + file)

def open_file():
    os.startfile(lb.get(lb.curselection()[0]))

root = tk.Tk()
root.geometry("400x400")
bt = tk.Button(root, text="Search", command=lambda:searchfiles(".png", "H:\"))
bt.pack()
lb = tk.Listbox(root)
lb.pack(fill="both", expand=1)
lb.bind("<Double-Button>", lambda x: open_file())
root.mainloop()

Answer #8

This is the behaviour to adopt when the referenced object is deleted. It is not specific to Django; this is an SQL standard. Although Django has its own implementation on top of SQL. (1)

There are seven possible actions to take when such event occurs:

  • CASCADE: When the referenced object is deleted, also delete the objects that have references to it (when you remove a blog post for instance, you might want to delete comments as well). SQL equivalent: CASCADE.
  • PROTECT: Forbid the deletion of the referenced object. To delete it you will have to delete all objects that reference it manually. SQL equivalent: RESTRICT.
  • RESTRICT: (introduced in Django 3.1) Similar behavior as PROTECT that matches SQL"s RESTRICT more accurately. (See django documentation example)
  • SET_NULL: Set the reference to NULL (requires the field to be nullable). For instance, when you delete a User, you might want to keep the comments he posted on blog posts, but say it was posted by an anonymous (or deleted) user. SQL equivalent: SET NULL.
  • SET_DEFAULT: Set the default value. SQL equivalent: SET DEFAULT.
  • SET(...): Set a given value. This one is not part of the SQL standard and is entirely handled by Django.
  • DO_NOTHING: Probably a very bad idea since this would create integrity issues in your database (referencing an object that actually doesn"t exist). SQL equivalent: NO ACTION. (2)

Source: Django documentation

See also the documentation of PostgreSQL for instance.

In most cases, CASCADE is the expected behaviour, but for every ForeignKey, you should always ask yourself what is the expected behaviour in this situation. PROTECT and SET_NULL are often useful. Setting CASCADE where it should not, can potentially delete all of your database in cascade, by simply deleting a single user.


Additional note to clarify cascade direction

It"s funny to notice that the direction of the CASCADE action is not clear to many people. Actually, it"s funny to notice that only the CASCADE action is not clear. I understand the cascade behavior might be confusing, however you must think that it is the same direction as any other action. Thus, if you feel that CASCADE direction is not clear to you, it actually means that on_delete behavior is not clear to you.

In your database, a foreign key is basically represented by an integer field which value is the primary key of the foreign object. Let"s say you have an entry comment_A, which has a foreign key to an entry article_B. If you delete the entry comment_A, everything is fine. article_B used to live without comment_A and don"t bother if it"s deleted. However, if you delete article_B, then comment_A panics! It never lived without article_B and needs it, and it"s part of its attributes (article=article_B, but what is article_B???). This is where on_delete steps in, to determine how to resolve this integrity error, either by saying:

  • "No! Please! Don"t! I can"t live without you!" (which is said PROTECT or RESTRICT in Django/SQL)
  • "All right, if I"m not yours, then I"m nobody"s" (which is said SET_NULL)
  • "Good bye world, I can"t live without article_B" and commit suicide (this is the CASCADE behavior).
  • "It"s OK, I"ve got spare lover, and I"ll reference article_C from now" (SET_DEFAULT, or even SET(...)).
  • "I can"t face reality, and I"ll keep calling your name even if that"s the only thing left to me!" (DO_NOTHING)

I hope it makes cascade direction clearer. :)


Footnotes

(1) Django has its own implementation on top of SQL. And, as mentioned by @JoeMjr2 in the comments below, Django will not create the SQL constraints. If you want the constraints to be ensured by your database (for instance, if your database is used by another application, or if you hang in the database console from time to time), you might want to set the related constraints manually yourself. There is an open ticket to add support for database-level on delete constrains in Django.

(2) Actually, there is one case where DO_NOTHING can be useful: If you want to skip Django"s implementation and implement the constraint yourself at the database-level.

Answer #9

Label vs. Location

The main distinction between the two methods is:

  • loc gets rows (and/or columns) with particular labels.

  • iloc gets rows (and/or columns) at integer locations.

To demonstrate, consider a series s of characters with a non-monotonic integer index:

>>> s = pd.Series(list("abcdef"), index=[49, 48, 47, 0, 1, 2]) 
49    a
48    b
47    c
0     d
1     e
2     f

>>> s.loc[0]    # value at index label 0
"d"

>>> s.iloc[0]   # value at index location 0
"a"

>>> s.loc[0:1]  # rows at index labels between 0 and 1 (inclusive)
0    d
1    e

>>> s.iloc[0:1] # rows at index location between 0 and 1 (exclusive)
49    a

Here are some of the differences/similarities between s.loc and s.iloc when passed various objects:

<object> description s.loc[<object>] s.iloc[<object>]
0 single item Value at index label 0 (the string "d") Value at index location 0 (the string "a")
0:1 slice Two rows (labels 0 and 1) One row (first row at location 0)
1:47 slice with out-of-bounds end Zero rows (empty Series) Five rows (location 1 onwards)
1:47:-1 slice with negative step three rows (labels 1 back to 47) Zero rows (empty Series)
[2, 0] integer list Two rows with given labels Two rows with given locations
s > "e" Bool series (indicating which values have the property) One row (containing "f") NotImplementedError
(s>"e").values Bool array One row (containing "f") Same as loc
999 int object not in index KeyError IndexError (out of bounds)
-1 int object not in index KeyError Returns last value in s
lambda x: x.index[3] callable applied to series (here returning 3rd item in index) s.loc[s.index[3]] s.iloc[s.index[3]]

loc"s label-querying capabilities extend well-beyond integer indexes and it"s worth highlighting a couple of additional examples.

Here"s a Series where the index contains string objects:

>>> s2 = pd.Series(s.index, index=s.values)
>>> s2
a    49
b    48
c    47
d     0
e     1
f     2

Since loc is label-based, it can fetch the first value in the Series using s2.loc["a"]. It can also slice with non-integer objects:

>>> s2.loc["c":"e"]  # all rows lying between "c" and "e" (inclusive)
c    47
d     0
e     1

For DateTime indexes, we don"t need to pass the exact date/time to fetch by label. For example:

>>> s3 = pd.Series(list("abcde"), pd.date_range("now", periods=5, freq="M")) 
>>> s3
2021-01-31 16:41:31.879768    a
2021-02-28 16:41:31.879768    b
2021-03-31 16:41:31.879768    c
2021-04-30 16:41:31.879768    d
2021-05-31 16:41:31.879768    e

Then to fetch the row(s) for March/April 2021 we only need:

>>> s3.loc["2021-03":"2021-04"]
2021-03-31 17:04:30.742316    c
2021-04-30 17:04:30.742316    d

Rows and Columns

loc and iloc work the same way with DataFrames as they do with Series. It"s useful to note that both methods can address columns and rows together.

When given a tuple, the first element is used to index the rows and, if it exists, the second element is used to index the columns.

Consider the DataFrame defined below:

>>> import numpy as np 
>>> df = pd.DataFrame(np.arange(25).reshape(5, 5),  
                      index=list("abcde"), 
                      columns=["x","y","z", 8, 9])
>>> df
    x   y   z   8   9
a   0   1   2   3   4
b   5   6   7   8   9
c  10  11  12  13  14
d  15  16  17  18  19
e  20  21  22  23  24

Then for example:

>>> df.loc["c": , :"z"]  # rows "c" and onwards AND columns up to "z"
    x   y   z
c  10  11  12
d  15  16  17
e  20  21  22

>>> df.iloc[:, 3]        # all rows, but only the column at index location 3
a     3
b     8
c    13
d    18
e    23

Sometimes we want to mix label and positional indexing methods for the rows and columns, somehow combining the capabilities of loc and iloc.

For example, consider the following DataFrame. How best to slice the rows up to and including "c" and take the first four columns?

>>> import numpy as np 
>>> df = pd.DataFrame(np.arange(25).reshape(5, 5),  
                      index=list("abcde"), 
                      columns=["x","y","z", 8, 9])
>>> df
    x   y   z   8   9
a   0   1   2   3   4
b   5   6   7   8   9
c  10  11  12  13  14
d  15  16  17  18  19
e  20  21  22  23  24

We can achieve this result using iloc and the help of another method:

>>> df.iloc[:df.index.get_loc("c") + 1, :4]
    x   y   z   8
a   0   1   2   3
b   5   6   7   8
c  10  11  12  13

get_loc() is an index method meaning "get the position of the label in this index". Note that since slicing with iloc is exclusive of its endpoint, we must add 1 to this value if we want row "c" as well.

Answer #10

Quick Answer:

The simplest way to get row counts per group is by calling .size(), which returns a Series:

df.groupby(["col1","col2"]).size()


Usually you want this result as a DataFrame (instead of a Series) so you can do:

df.groupby(["col1", "col2"]).size().reset_index(name="counts")


If you want to find out how to calculate the row counts and other statistics for each group continue reading below.


Detailed example:

Consider the following example dataframe:

In [2]: df
Out[2]: 
  col1 col2  col3  col4  col5  col6
0    A    B  0.20 -0.61 -0.49  1.49
1    A    B -1.53 -1.01 -0.39  1.82
2    A    B -0.44  0.27  0.72  0.11
3    A    B  0.28 -1.32  0.38  0.18
4    C    D  0.12  0.59  0.81  0.66
5    C    D -0.13 -1.65 -1.64  0.50
6    C    D -1.42 -0.11 -0.18 -0.44
7    E    F -0.00  1.42 -0.26  1.17
8    E    F  0.91 -0.47  1.35 -0.34
9    G    H  1.48 -0.63 -1.14  0.17

First let"s use .size() to get the row counts:

In [3]: df.groupby(["col1", "col2"]).size()
Out[3]: 
col1  col2
A     B       4
C     D       3
E     F       2
G     H       1
dtype: int64

Then let"s use .size().reset_index(name="counts") to get the row counts:

In [4]: df.groupby(["col1", "col2"]).size().reset_index(name="counts")
Out[4]: 
  col1 col2  counts
0    A    B       4
1    C    D       3
2    E    F       2
3    G    H       1


Including results for more statistics

When you want to calculate statistics on grouped data, it usually looks like this:

In [5]: (df
   ...: .groupby(["col1", "col2"])
   ...: .agg({
   ...:     "col3": ["mean", "count"], 
   ...:     "col4": ["median", "min", "count"]
   ...: }))
Out[5]: 
            col4                  col3      
          median   min count      mean count
col1 col2                                   
A    B    -0.810 -1.32     4 -0.372500     4
C    D    -0.110 -1.65     3 -0.476667     3
E    F     0.475 -0.47     2  0.455000     2
G    H    -0.630 -0.63     1  1.480000     1

The result above is a little annoying to deal with because of the nested column labels, and also because row counts are on a per column basis.

To gain more control over the output I usually split the statistics into individual aggregations that I then combine using join. It looks like this:

In [6]: gb = df.groupby(["col1", "col2"])
   ...: counts = gb.size().to_frame(name="counts")
   ...: (counts
   ...:  .join(gb.agg({"col3": "mean"}).rename(columns={"col3": "col3_mean"}))
   ...:  .join(gb.agg({"col4": "median"}).rename(columns={"col4": "col4_median"}))
   ...:  .join(gb.agg({"col4": "min"}).rename(columns={"col4": "col4_min"}))
   ...:  .reset_index()
   ...: )
   ...: 
Out[6]: 
  col1 col2  counts  col3_mean  col4_median  col4_min
0    A    B       4  -0.372500       -0.810     -1.32
1    C    D       3  -0.476667       -0.110     -1.65
2    E    F       2   0.455000        0.475     -0.47
3    G    H       1   1.480000       -0.630     -0.63



Footnotes

The code used to generate the test data is shown below:

In [1]: import numpy as np
   ...: import pandas as pd 
   ...: 
   ...: keys = np.array([
   ...:         ["A", "B"],
   ...:         ["A", "B"],
   ...:         ["A", "B"],
   ...:         ["A", "B"],
   ...:         ["C", "D"],
   ...:         ["C", "D"],
   ...:         ["C", "D"],
   ...:         ["E", "F"],
   ...:         ["E", "F"],
   ...:         ["G", "H"] 
   ...:         ])
   ...: 
   ...: df = pd.DataFrame(
   ...:     np.hstack([keys,np.random.randn(10,4).round(2)]), 
   ...:     columns = ["col1", "col2", "col3", "col4", "col5", "col6"]
   ...: )
   ...: 
   ...: df[["col3", "col4", "col5", "col6"]] = 
   ...:     df[["col3", "col4", "col5", "col6"]].astype(float)
   ...: 


Disclaimer:

If some of the columns that you are aggregating have null values, then you really want to be looking at the group row counts as an independent aggregation for each column. Otherwise you may be misled as to how many records are actually being used to calculate things like the mean because pandas will drop NaN entries in the mean calculation without telling you about it.

Get Solution for free from DataCamp guru