Use numpy array in shared memory for multiprocessing

| |

👻 Check our latest review to choose the best laptop for Machine Learning engineers and Deep learning tasks!

I would like to use a numpy array in shared memory for use with the multiprocessing module. The difficulty is using it like a numpy array, and not just as a ctypes array.

from multiprocessing import Process, Array
import scipy

def f(a):
    a[0] = -a[0]

if __name__ == "__main__":
    # Create the array
    N = int(10)
    unshared_arr = scipy.rand(N)
    arr = Array("d", unshared_arr)
    print "Originally, the first two elements of arr = %s"%(arr[:2])

    # Create, start, and finish the child processes
    p = Process(target=f, args=(arr,))

    # Printing out the changed values
    print "Now, the first two elements of arr = %s"%arr[:2]

This produces output such as:

Originally, the first two elements of arr = [0.3518653236697369, 0.517794725524976]
Now, the first two elements of arr = [-0.3518653236697369, 0.517794725524976]

The array can be accessed in a ctypes manner, e.g. arr[i] makes sense. However, it is not a numpy array, and I cannot perform operations such as -1*arr, or arr.sum(). I suppose a solution would be to convert the ctypes array into a numpy array. However (besides not being able to make this work), I don"t believe it would be shared anymore.

It seems there would be a standard solution to what has to be a common problem.

👻 Read also: what is the best laptop for engineering students?

Use numpy array in shared memory for multiprocessing join: Questions

Why is it string.join(list) instead of list.join(string)?

5 answers

Evan Fosmark By Evan Fosmark

This has always confused me. It seems like this would be nicer:

my_list = ["Hello", "world"]
# Produce: "Hello-world"

Than this:

my_list = ["Hello", "world"]
# Produce: "Hello-world"

Is there a specific reason it is like this?


Answer #1

It"s because any iterable can be joined (e.g, list, tuple, dict, set), but its contents and the "joiner" must be strings.

For example:

"_".join(["welcome", "to", "stack", "overflow"])
"_".join(("welcome", "to", "stack", "overflow"))

Using something other than strings will raise the following error:

TypeError: sequence item 0: expected str instance, int found


Answer #2

This was discussed in the String methods... finally thread in the Python-Dev achive, and was accepted by Guido. This thread began in Jun 1999, and str.join was included in Python 1.6 which was released in Sep 2000 (and supported Unicode). Python 2.0 (supported str methods including join) was released in Oct 2000.

  • There were four options proposed in this thread:
    • str.join(seq)
    • seq.join(str)
    • seq.reduce(str)
    • join as a built-in function
  • Guido wanted to support not only lists and tuples, but all sequences/iterables.
  • seq.reduce(str) is difficult for newcomers.
  • seq.join(str) introduces unexpected dependency from sequences to str/unicode.
  • join() as a built-in function would support only specific data types. So using a built-in namespace is not good. If join() supports many datatypes, creating an optimized implementation would be difficult, if implemented using the __add__ method then it would ve O(n¬≤).
  • The separator string (sep) should not be omitted. Explicit is better than implicit.

Here are some additional thoughts (my own, and my friend"s):

  • Unicode support was coming, but it was not final. At that time UTF-8 was the most likely about to replace UCS2/4. To calculate total buffer length of UTF-8 strings it needs to know character coding rule.
  • At that time, Python had already decided on a common sequence interface rule where a user could create a sequence-like (iterable) class. But Python didn"t support extending built-in types until 2.2. At that time it was difficult to provide basic iterable class (which is mentioned in another comment).

Guido"s decision is recorded in a historical mail, deciding on str.join(seq):

Funny, but it does seem right! Barry, go for it...
Guido van Rossum


Answer #3

Because the join() method is in the string class, instead of the list class?

I agree it looks funny.


Historical note. When I first learned Python, I expected join to be a method of a list, which would take the delimiter as an argument. Lots of people feel the same way, and there’s a story behind the join method. Prior to Python 1.6, strings didn’t have all these useful methods. There was a separate string module which contained all the string functions; each function took a string as its first argument. The functions were deemed important enough to put onto the strings themselves, which made sense for functions like lower, upper, and split. But many hard-core Python programmers objected to the new join method, arguing that it should be a method of the list instead, or that it shouldn’t move at all but simply stay a part of the old string module (which still has lots of useful stuff in it). I use the new join method exclusively, but you will see code written either way, and if it really bothers you, you can use the old string.join function instead.

--- Mark Pilgrim, Dive into Python


How do I merge two dictionaries in a single expression (taking union of dictionaries)?

5 answers

Carl Meyer By Carl Meyer

I have two Python dictionaries, and I want to write a single expression that returns these two dictionaries, merged (i.e. taking the union). The update() method would be what I need, if it returned its result instead of modifying a dictionary in-place.

>>> x = {"a": 1, "b": 2}
>>> y = {"b": 10, "c": 11}
>>> z = x.update(y)
>>> print(z)
>>> x
{"a": 1, "b": 10, "c": 11}

How can I get that final merged dictionary in z, not x?

(To be extra-clear, the last-one-wins conflict-handling of dict.update() is what I"m looking for as well.)


Answer #1

How can I merge two Python dictionaries in a single expression?

For dictionaries x and y, z becomes a shallowly-merged dictionary with values from y replacing those from x.

  • In Python 3.9.0 or greater (released 17 October 2020): PEP-584, discussed here, was implemented and provides the simplest method:

    z = x | y          # NOTE: 3.9+ ONLY
  • In Python 3.5 or greater:

    z = {**x, **y}
  • In Python 2, (or 3.4 or lower) write a function:

    def merge_two_dicts(x, y):
        z = x.copy()   # start with keys and values of x
        z.update(y)    # modifies z with keys and values of y
        return z

    and now:

    z = merge_two_dicts(x, y)


Say you have two dictionaries and you want to merge them into a new dictionary without altering the original dictionaries:

x = {"a": 1, "b": 2}
y = {"b": 3, "c": 4}

The desired result is to get a new dictionary (z) with the values merged, and the second dictionary"s values overwriting those from the first.

>>> z
{"a": 1, "b": 3, "c": 4}

A new syntax for this, proposed in PEP 448 and available as of Python 3.5, is

z = {**x, **y}

And it is indeed a single expression.

Note that we can merge in with literal notation as well:

z = {**x, "foo": 1, "bar": 2, **y}

and now:

>>> z
{"a": 1, "b": 3, "foo": 1, "bar": 2, "c": 4}

It is now showing as implemented in the release schedule for 3.5, PEP 478, and it has now made its way into the What"s New in Python 3.5 document.

However, since many organizations are still on Python 2, you may wish to do this in a backward-compatible way. The classically Pythonic way, available in Python 2 and Python 3.0-3.4, is to do this as a two-step process:

z = x.copy()
z.update(y) # which returns None since it mutates z

In both approaches, y will come second and its values will replace x"s values, thus b will point to 3 in our final result.

Not yet on Python 3.5, but want a single expression

If you are not yet on Python 3.5 or need to write backward-compatible code, and you want this in a single expression, the most performant while the correct approach is to put it in a function:

def merge_two_dicts(x, y):
    """Given two dictionaries, merge them into a new dict as a shallow copy."""
    z = x.copy()
    return z

and then you have a single expression:

z = merge_two_dicts(x, y)

You can also make a function to merge an arbitrary number of dictionaries, from zero to a very large number:

def merge_dicts(*dict_args):
    Given any number of dictionaries, shallow copy and merge into a new dict,
    precedence goes to key-value pairs in latter dictionaries.
    result = {}
    for dictionary in dict_args:
    return result

This function will work in Python 2 and 3 for all dictionaries. e.g. given dictionaries a to g:

z = merge_dicts(a, b, c, d, e, f, g) 

and key-value pairs in g will take precedence over dictionaries a to f, and so on.

Critiques of Other Answers

Don"t use what you see in the formerly accepted answer:

z = dict(x.items() + y.items())

In Python 2, you create two lists in memory for each dict, create a third list in memory with length equal to the length of the first two put together, and then discard all three lists to create the dict. In Python 3, this will fail because you"re adding two dict_items objects together, not two lists -

>>> c = dict(a.items() + b.items())
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: "dict_items" and "dict_items"

and you would have to explicitly create them as lists, e.g. z = dict(list(x.items()) + list(y.items())). This is a waste of resources and computation power.

Similarly, taking the union of items() in Python 3 (viewitems() in Python 2.7) will also fail when values are unhashable objects (like lists, for example). Even if your values are hashable, since sets are semantically unordered, the behavior is undefined in regards to precedence. So don"t do this:

>>> c = dict(a.items() | b.items())

This example demonstrates what happens when values are unhashable:

>>> x = {"a": []}
>>> y = {"b": []}
>>> dict(x.items() | y.items())
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unhashable type: "list"

Here"s an example where y should have precedence, but instead the value from x is retained due to the arbitrary order of sets:

>>> x = {"a": 2}
>>> y = {"a": 1}
>>> dict(x.items() | y.items())
{"a": 2}

Another hack you should not use:

z = dict(x, **y)

This uses the dict constructor and is very fast and memory-efficient (even slightly more so than our two-step process) but unless you know precisely what is happening here (that is, the second dict is being passed as keyword arguments to the dict constructor), it"s difficult to read, it"s not the intended usage, and so it is not Pythonic.

Here"s an example of the usage being remediated in django.

Dictionaries are intended to take hashable keys (e.g. frozensets or tuples), but this method fails in Python 3 when keys are not strings.

>>> c = dict(a, **b)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: keyword arguments must be strings

From the mailing list, Guido van Rossum, the creator of the language, wrote:

I am fine with declaring dict({}, **{1:3}) illegal, since after all it is abuse of the ** mechanism.


Apparently dict(x, **y) is going around as "cool hack" for "call x.update(y) and return x". Personally, I find it more despicable than cool.

It is my understanding (as well as the understanding of the creator of the language) that the intended usage for dict(**y) is for creating dictionaries for readability purposes, e.g.:

dict(a=1, b=10, c=11)

instead of

{"a": 1, "b": 10, "c": 11}

Response to comments

Despite what Guido says, dict(x, **y) is in line with the dict specification, which btw. works for both Python 2 and 3. The fact that this only works for string keys is a direct consequence of how keyword parameters work and not a short-coming of dict. Nor is using the ** operator in this place an abuse of the mechanism, in fact, ** was designed precisely to pass dictionaries as keywords.

Again, it doesn"t work for 3 when keys are not strings. The implicit calling contract is that namespaces take ordinary dictionaries, while users must only pass keyword arguments that are strings. All other callables enforced it. dict broke this consistency in Python 2:

>>> foo(**{("a", "b"): None})
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: foo() keywords must be strings
>>> dict(**{("a", "b"): None})
{("a", "b"): None}

This inconsistency was bad given other implementations of Python (PyPy, Jython, IronPython). Thus it was fixed in Python 3, as this usage could be a breaking change.

I submit to you that it is malicious incompetence to intentionally write code that only works in one version of a language or that only works given certain arbitrary constraints.

More comments:

dict(x.items() + y.items()) is still the most readable solution for Python 2. Readability counts.

My response: merge_two_dicts(x, y) actually seems much clearer to me, if we"re actually concerned about readability. And it is not forward compatible, as Python 2 is increasingly deprecated.

{**x, **y} does not seem to handle nested dictionaries. the contents of nested keys are simply overwritten, not merged [...] I ended up being burnt by these answers that do not merge recursively and I was surprised no one mentioned it. In my interpretation of the word "merging" these answers describe "updating one dict with another", and not merging.

Yes. I must refer you back to the question, which is asking for a shallow merge of two dictionaries, with the first"s values being overwritten by the second"s - in a single expression.

Assuming two dictionaries of dictionaries, one might recursively merge them in a single function, but you should be careful not to modify the dictionaries from either source, and the surest way to avoid that is to make a copy when assigning values. As keys must be hashable and are usually therefore immutable, it is pointless to copy them:

from copy import deepcopy

def dict_of_dicts_merge(x, y):
    z = {}
    overlapping_keys = x.keys() & y.keys()
    for key in overlapping_keys:
        z[key] = dict_of_dicts_merge(x[key], y[key])
    for key in x.keys() - overlapping_keys:
        z[key] = deepcopy(x[key])
    for key in y.keys() - overlapping_keys:
        z[key] = deepcopy(y[key])
    return z


>>> x = {"a":{1:{}}, "b": {2:{}}}
>>> y = {"b":{10:{}}, "c": {11:{}}}
>>> dict_of_dicts_merge(x, y)
{"b": {2: {}, 10: {}}, "a": {1: {}}, "c": {11: {}}}

Coming up with contingencies for other value types is far beyond the scope of this question, so I will point you at my answer to the canonical question on a "Dictionaries of dictionaries merge".

Less Performant But Correct Ad-hocs

These approaches are less performant, but they will provide correct behavior. They will be much less performant than copy and update or the new unpacking because they iterate through each key-value pair at a higher level of abstraction, but they do respect the order of precedence (latter dictionaries have precedence)

You can also chain the dictionaries manually inside a dict comprehension:

{k: v for d in dicts for k, v in d.items()} # iteritems in Python 2.7

or in Python 2.6 (and perhaps as early as 2.4 when generator expressions were introduced):

dict((k, v) for d in dicts for k, v in d.items()) # iteritems in Python 2

itertools.chain will chain the iterators over the key-value pairs in the correct order:

from itertools import chain
z = dict(chain(x.items(), y.items())) # iteritems in Python 2

Performance Analysis

I"m only going to do the performance analysis of the usages known to behave correctly. (Self-contained so you can copy and paste yourself.)

from timeit import repeat
from itertools import chain

x = dict.fromkeys("abcdefg")
y = dict.fromkeys("efghijk")

def merge_two_dicts(x, y):
    z = x.copy()
    return z

min(repeat(lambda: {**x, **y}))
min(repeat(lambda: merge_two_dicts(x, y)))
min(repeat(lambda: {k: v for d in (x, y) for k, v in d.items()}))
min(repeat(lambda: dict(chain(x.items(), y.items()))))
min(repeat(lambda: dict(item for d in (x, y) for item in d.items())))

In Python 3.8.1, NixOS:

>>> min(repeat(lambda: {**x, **y}))
>>> min(repeat(lambda: merge_two_dicts(x, y)))
>>> min(repeat(lambda: {k: v for d in (x, y) for k, v in d.items()}))
>>> min(repeat(lambda: dict(chain(x.items(), y.items()))))
>>> min(repeat(lambda: dict(item for d in (x, y) for item in d.items())))
$ uname -a
Linux nixos 4.19.113 #1-NixOS SMP Wed Mar 25 07:06:15 UTC 2020 x86_64 GNU/Linux

Resources on Dictionaries


Answer #2

In your case, what you can do is:

z = dict(list(x.items()) + list(y.items()))

This will, as you want it, put the final dict in z, and make the value for key b be properly overridden by the second (y) dict"s value:

>>> x = {"a":1, "b": 2}
>>> y = {"b":10, "c": 11}
>>> z = dict(list(x.items()) + list(y.items()))
>>> z
{"a": 1, "c": 11, "b": 10}

If you use Python 2, you can even remove the list() calls. To create z:

>>> z = dict(x.items() + y.items())
>>> z
{"a": 1, "c": 11, "b": 10}

If you use Python version 3.9.0a4 or greater, then you can directly use:

x = {"a":1, "b": 2}
y = {"b":10, "c": 11}
z = x | y
{"a": 1, "c": 11, "b": 10}


Answer #3

An alternative:

z = x.copy()


Learn programming in R: courses


Best Python online courses for 2022


Best laptop for Fortnite


Best laptop for Excel


Best laptop for Solidworks


Best laptop for Roblox


Best computer for crypto mining


Best laptop for Sims 4


Latest questions


psycopg2: insert multiple rows with one query

12 answers


How to convert Nonetype to int or string?

12 answers


How to specify multiple return types using type-hints

12 answers


Javascript Error: IPython is not defined in JupyterLab

12 answers



Python OpenCV | cv2.putText () method

numpy.arctan2 () in Python

Python | os.path.realpath () method

Python OpenCV | () method

Python OpenCV cv2.cvtColor () method

Python - Move item to the end of the list

time.perf_counter () function in Python

Check if one list is a subset of another in Python

Python os.path.join () method