How to adjust padding with cutoff or overlapping labels

| | |

👻 See our latest reviews to choose the best laptop for Machine Learning and Deep learning tasks!

Updated MRE with subplots

  • I"m not sure of the usefulness of the original question and MRE. The margin padding seems to be properly adjusted for large x and y labels.
  • The issue is reproducible with subplots.
  • Using matplotlib 3.4.2
fig, axes = plt.subplots(ncols=2, nrows=2, figsize=(8, 6))
axes = axes.flatten()

for ax in axes:
    ax.set_ylabel(r"$lnleft(frac{x_a-x_b}{x_a-x_c}
ight)$")
    ax.set_xlabel(r"$lnleft(frac{x_a-x_d}{x_a-x_e}
ight)$")

plt.show()

enter image description here

Original

I am plotting a dataset using matplotlib where I have an xlabel that is quite "tall" (it"s a formula rendered in TeX that contains a fraction and is therefore has the height equivalent of a couple of lines of text).

In any case, the bottom of the formula is always cut off when I draw the figures. Changing figure size doesn"t seem to help this, and I haven"t been able to figure out how to shift the x-axis "up" to make room for the xlabel. Something like that would be a reasonable temporary solution, but what would be nice would be to have a way to make matplotlib recognize automatically that the label is cut off and resize accordingly.

Here"s an example of what I mean:

import matplotlib.pyplot as plt

plt.figure()
plt.ylabel(r"$lnleft(frac{x_a-x_b}{x_a-x_c}
ight)$")
plt.xlabel(r"$lnleft(frac{x_a-x_d}{x_a-x_e}
ight)$", fontsize=50)
plt.title("Example with matplotlib 3.4.2
MRE no longer an issue")
plt.show()

enter image description here

The entire ylabel is visible, however, the xlabel is cut off at the bottom.

In the case this is a machine-specific problem, I am running this on OSX 10.6.8 with matplotlib 1.0.0

👻 Read also: what is the best laptop for engineering students in 2022?

How to adjust padding with cutoff or overlapping labels mean: Questions

Meaning of @classmethod and @staticmethod for beginner?

5 answers

user1632861 By user1632861

Could someone explain to me the meaning of @classmethod and @staticmethod in python? I need to know the difference and the meaning.

As far as I understand, @classmethod tells a class that it"s a method which should be inherited into subclasses, or... something. However, what"s the point of that? Why not just define the class method without adding @classmethod or @staticmethod or any @ definitions?

tl;dr: when should I use them, why should I use them, and how should I use them?

1726

Answer #1

Though classmethod and staticmethod are quite similar, there"s a slight difference in usage for both entities: classmethod must have a reference to a class object as the first parameter, whereas staticmethod can have no parameters at all.

Example

class Date(object):

    def __init__(self, day=0, month=0, year=0):
        self.day = day
        self.month = month
        self.year = year

    @classmethod
    def from_string(cls, date_as_string):
        day, month, year = map(int, date_as_string.split("-"))
        date1 = cls(day, month, year)
        return date1

    @staticmethod
    def is_date_valid(date_as_string):
        day, month, year = map(int, date_as_string.split("-"))
        return day <= 31 and month <= 12 and year <= 3999

date2 = Date.from_string("11-09-2012")
is_date = Date.is_date_valid("11-09-2012")

Explanation

Let"s assume an example of a class, dealing with date information (this will be our boilerplate):

class Date(object):

    def __init__(self, day=0, month=0, year=0):
        self.day = day
        self.month = month
        self.year = year

This class obviously could be used to store information about certain dates (without timezone information; let"s assume all dates are presented in UTC).

Here we have __init__, a typical initializer of Python class instances, which receives arguments as a typical instancemethod, having the first non-optional argument (self) that holds a reference to a newly created instance.

Class Method

We have some tasks that can be nicely done using classmethods.

Let"s assume that we want to create a lot of Date class instances having date information coming from an outer source encoded as a string with format "dd-mm-yyyy". Suppose we have to do this in different places in the source code of our project.

So what we must do here is:

  1. Parse a string to receive day, month and year as three integer variables or a 3-item tuple consisting of that variable.
  2. Instantiate Date by passing those values to the initialization call.

This will look like:

day, month, year = map(int, string_date.split("-"))
date1 = Date(day, month, year)

For this purpose, C++ can implement such a feature with overloading, but Python lacks this overloading. Instead, we can use classmethod. Let"s create another "constructor".

    @classmethod
    def from_string(cls, date_as_string):
        day, month, year = map(int, date_as_string.split("-"))
        date1 = cls(day, month, year)
        return date1

date2 = Date.from_string("11-09-2012")

Let"s look more carefully at the above implementation, and review what advantages we have here:

  1. We"ve implemented date string parsing in one place and it"s reusable now.
  2. Encapsulation works fine here (if you think that you could implement string parsing as a single function elsewhere, this solution fits the OOP paradigm far better).
  3. cls is an object that holds the class itself, not an instance of the class. It"s pretty cool because if we inherit our Date class, all children will have from_string defined also.

Static method

What about staticmethod? It"s pretty similar to classmethod but doesn"t take any obligatory parameters (like a class method or instance method does).

Let"s look at the next use case.

We have a date string that we want to validate somehow. This task is also logically bound to the Date class we"ve used so far, but doesn"t require instantiation of it.

Here is where staticmethod can be useful. Let"s look at the next piece of code:

    @staticmethod
    def is_date_valid(date_as_string):
        day, month, year = map(int, date_as_string.split("-"))
        return day <= 31 and month <= 12 and year <= 3999

    # usage:
    is_date = Date.is_date_valid("11-09-2012")

So, as we can see from usage of staticmethod, we don"t have any access to what the class is---it"s basically just a function, called syntactically like a method, but without access to the object and its internals (fields and another methods), while classmethod does.

1726

Answer #2

Rostyslav Dzinko"s answer is very appropriate. I thought I could highlight one other reason you should choose @classmethod over @staticmethod when you are creating an additional constructor.

In the example above, Rostyslav used the @classmethod from_string as a Factory to create Date objects from otherwise unacceptable parameters. The same can be done with @staticmethod as is shown in the code below:

class Date:
  def __init__(self, month, day, year):
    self.month = month
    self.day   = day
    self.year  = year


  def display(self):
    return "{0}-{1}-{2}".format(self.month, self.day, self.year)


  @staticmethod
  def millenium(month, day):
    return Date(month, day, 2000)

new_year = Date(1, 1, 2013)               # Creates a new Date object
millenium_new_year = Date.millenium(1, 1) # also creates a Date object. 

# Proof:
new_year.display()           # "1-1-2013"
millenium_new_year.display() # "1-1-2000"

isinstance(new_year, Date) # True
isinstance(millenium_new_year, Date) # True

Thus both new_year and millenium_new_year are instances of the Date class.

But, if you observe closely, the Factory process is hard-coded to create Date objects no matter what. What this means is that even if the Date class is subclassed, the subclasses will still create plain Date objects (without any properties of the subclass). See that in the example below:

class DateTime(Date):
  def display(self):
      return "{0}-{1}-{2} - 00:00:00PM".format(self.month, self.day, self.year)


datetime1 = DateTime(10, 10, 1990)
datetime2 = DateTime.millenium(10, 10)

isinstance(datetime1, DateTime) # True
isinstance(datetime2, DateTime) # False

datetime1.display() # returns "10-10-1990 - 00:00:00PM"
datetime2.display() # returns "10-10-2000" because it"s not a DateTime object but a Date object. Check the implementation of the millenium method on the Date class for more details.

datetime2 is not an instance of DateTime? WTF? Well, that"s because of the @staticmethod decorator used.

In most cases, this is undesired. If what you want is a Factory method that is aware of the class that called it, then @classmethod is what you need.

Rewriting Date.millenium as (that"s the only part of the above code that changes):

@classmethod
def millenium(cls, month, day):
    return cls(month, day, 2000)

ensures that the class is not hard-coded but rather learnt. cls can be any subclass. The resulting object will rightly be an instance of cls.
Let"s test that out:

datetime1 = DateTime(10, 10, 1990)
datetime2 = DateTime.millenium(10, 10)

isinstance(datetime1, DateTime) # True
isinstance(datetime2, DateTime) # True


datetime1.display() # "10-10-1990 - 00:00:00PM"
datetime2.display() # "10-10-2000 - 00:00:00PM"

The reason is, as you know by now, that @classmethod was used instead of @staticmethod

1726

Answer #3

@classmethod means: when this method is called, we pass the class as the first argument instead of the instance of that class (as we normally do with methods). This means you can use the class and its properties inside that method rather than a particular instance.

@staticmethod means: when this method is called, we don"t pass an instance of the class to it (as we normally do with methods). This means you can put a function inside a class but you can"t access the instance of that class (this is useful when your method does not use the instance).

How do I resize an image using PIL and maintain its aspect ratio?

5 answers

saturdayplace By saturdayplace

Is there an obvious way to do this that I"m missing? I"m just trying to make thumbnails.

526

Answer #1

Define a maximum size. Then, compute a resize ratio by taking min(maxwidth/width, maxheight/height).

The proper size is oldsize*ratio.

There is of course also a library method to do this: the method Image.thumbnail.
Below is an (edited) example from the PIL documentation.

import os, sys
import Image

size = 128, 128

for infile in sys.argv[1:]:
    outfile = os.path.splitext(infile)[0] + ".thumbnail"
    if infile != outfile:
        try:
            im = Image.open(infile)
            im.thumbnail(size, Image.ANTIALIAS)
            im.save(outfile, "JPEG")
        except IOError:
            print "cannot create thumbnail for "%s"" % infile

526

Answer #2

This script will resize an image (somepic.jpg) using PIL (Python Imaging Library) to a width of 300 pixels and a height proportional to the new width. It does this by determining what percentage 300 pixels is of the original width (img.size[0]) and then multiplying the original height (img.size[1]) by that percentage. Change "basewidth" to any other number to change the default width of your images.

from PIL import Image

basewidth = 300
img = Image.open("somepic.jpg")
wpercent = (basewidth/float(img.size[0]))
hsize = int((float(img.size[1])*float(wpercent)))
img = img.resize((basewidth,hsize), Image.ANTIALIAS)
img.save("somepic.jpg")

How to resize an image with OpenCV2.0 and Python2.6

5 answers

I want to use OpenCV2.0 and Python2.6 to show resized images. I used and adopted this example but unfortunately, this code is for OpenCV2.1 and does not seem to be working on 2.0. Here my code:

import os, glob
import cv

ulpath = "exampleshq/"

for infile in glob.glob( os.path.join(ulpath, "*.jpg") ):
    im = cv.LoadImage(infile)
    thumbnail = cv.CreateMat(im.rows/10, im.cols/10, cv.CV_8UC3)
    cv.Resize(im, thumbnail)
    cv.NamedWindow(infile)
    cv.ShowImage(infile, thumbnail)
    cv.WaitKey(0)
    cv.DestroyWindow(name)

Since I cannot use

cv.LoadImageM

I used

cv.LoadImage

instead, which was no problem in other applications. Nevertheless, cv.iplimage has no attribute rows, cols or size. Can anyone give me a hint, how to solve this problem?

194

Answer #1

If you wish to use CV2, you need to use the resize function.

For example, this will resize both axes by half:

small = cv2.resize(image, (0,0), fx=0.5, fy=0.5) 

and this will resize the image to have 100 cols (width) and 50 rows (height):

resized_image = cv2.resize(image, (100, 50)) 

Another option is to use scipy module, by using:

small = scipy.misc.imresize(image, 0.5)

There are obviously more options you can read in the documentation of those functions (cv2.resize, scipy.misc.imresize).


Update:
According to the SciPy documentation:

imresize is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.
Use skimage.transform.resize instead.

Note that if you"re looking to resize by a factor, you may actually want skimage.transform.rescale.

Shop

Learn programming in R: courses

$

Best Python online courses for 2022

$

Best laptop for Fortnite

$

Best laptop for Excel

$

Best laptop for Solidworks

$

Best laptop for Roblox

$

Best computer for crypto mining

$

Best laptop for Sims 4

$

Latest questions

NUMPYNUMPY

psycopg2: insert multiple rows with one query

12 answers

NUMPYNUMPY

How to convert Nonetype to int or string?

12 answers

NUMPYNUMPY

How to specify multiple return types using type-hints

12 answers

NUMPYNUMPY

Javascript Error: IPython is not defined in JupyterLab

12 answers

News


Wiki

Python OpenCV | cv2.putText () method

numpy.arctan2 () in Python

Python | os.path.realpath () method

Python OpenCV | cv2.circle () method

Python OpenCV cv2.cvtColor () method

Python - Move item to the end of the list

time.perf_counter () function in Python

Check if one list is a subset of another in Python

Python os.path.join () method