Loading a trained Keras model and continue training

| | | | | | | | | | | | | | | | | | | | |

👻 Check our latest review to choose the best laptop for Machine Learning engineers and Deep learning tasks!

I was wondering if it was possible to save a partly trained Keras model and continue the training after loading the model again.

The reason for this is that I will have more training data in the future and I do not want to retrain the whole model again.

The functions which I am using are:

#Partly train model
model.fit(first_training, first_classes, batch_size=32, nb_epoch=20)

#Save partly trained model
model.save("partly_trained.h5")

#Load partly trained model
from keras.models import load_model
model = load_model("partly_trained.h5")

#Continue training
model.fit(second_training, second_classes, batch_size=32, nb_epoch=20)

Edit 1: added fully working example

With the first dataset after 10 epochs the loss of the last epoch will be 0.0748 and the accuracy 0.9863.

After saving, deleting and reloading the model the loss and accuracy of the model trained on the second dataset will be 0.1711 and 0.9504 respectively.

Is this caused by the new training data or by a completely re-trained model?

"""
Model by: http://machinelearningmastery.com/
"""
# load (downloaded if needed) the MNIST dataset
import numpy
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import np_utils
from keras.models import load_model
numpy.random.seed(7)

def baseline_model():
    model = Sequential()
    model.add(Dense(num_pixels, input_dim=num_pixels, init="normal", activation="relu"))
    model.add(Dense(num_classes, init="normal", activation="softmax"))
    model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
    return model

if __name__ == "__main__":
    # load data
    (X_train, y_train), (X_test, y_test) = mnist.load_data()

    # flatten 28*28 images to a 784 vector for each image
    num_pixels = X_train.shape[1] * X_train.shape[2]
    X_train = X_train.reshape(X_train.shape[0], num_pixels).astype("float32")
    X_test = X_test.reshape(X_test.shape[0], num_pixels).astype("float32")
    # normalize inputs from 0-255 to 0-1
    X_train = X_train / 255
    X_test = X_test / 255
    # one hot encode outputs
    y_train = np_utils.to_categorical(y_train)
    y_test = np_utils.to_categorical(y_test)
    num_classes = y_test.shape[1]

    # build the model
    model = baseline_model()

    #Partly train model
    dataset1_x = X_train[:3000]
    dataset1_y = y_train[:3000]
    model.fit(dataset1_x, dataset1_y, nb_epoch=10, batch_size=200, verbose=2)

    # Final evaluation of the model
    scores = model.evaluate(X_test, y_test, verbose=0)
    print("Baseline Error: %.2f%%" % (100-scores[1]*100))

    #Save partly trained model
    model.save("partly_trained.h5")
    del model

    #Reload model
    model = load_model("partly_trained.h5")

    #Continue training
    dataset2_x = X_train[3000:]
    dataset2_y = y_train[3000:]
    model.fit(dataset2_x, dataset2_y, nb_epoch=10, batch_size=200, verbose=2)
    scores = model.evaluate(X_test, y_test, verbose=0)
    print("Baseline Error: %.2f%%" % (100-scores[1]*100))

Edit 2: tensorflow.keras remarks

For tensorflow.keras change the parameter nb_epochs to epochs in the model fit. The imports and basemodel function are:

import numpy
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import load_model


numpy.random.seed(7)

def baseline_model():
    model = Sequential()
    model.add(Dense(num_pixels, input_dim=num_pixels, activation="relu"))
    model.add(Dense(num_classes, activation="softmax"))
    model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
    return model

👻 Read also: what is the best laptop for engineering students?

Loading a trained Keras model and continue training __del__: Questions

How can I make a time delay in Python?

5 answers

I would like to know how to put a time delay in a Python script.

2973

Answer #1

import time
time.sleep(5)   # Delays for 5 seconds. You can also use a float value.

Here is another example where something is run approximately once a minute:

import time
while True:
    print("This prints once a minute.")
    time.sleep(60) # Delay for 1 minute (60 seconds).

2973

Answer #2

You can use the sleep() function in the time module. It can take a float argument for sub-second resolution.

from time import sleep
sleep(0.1) # Time in seconds

Loading a trained Keras model and continue training __del__: Questions

How to delete a file or folder in Python?

5 answers

How do I delete a file or folder in Python?

2639

Answer #1


Path objects from the Python 3.4+ pathlib module also expose these instance methods:

We hope this article has helped you to resolve the problem. Apart from Loading a trained Keras model and continue training, check other __del__-related topics.

Want to excel in Python? See our review of the best Python online courses 2023. If you are interested in Data Science, check also how to learn programming in R.

By the way, this material is also available in other languages:



Olivia Robinson

Abu Dhabi | 2023-03-24

Lua PHP module is always a bit confusing 😭 Loading a trained Keras model and continue training is not the only problem I encountered. I just hope that will not emerge anymore

Jan Innsbruck

Singapore | 2023-03-24

__future__ Python module is always a bit confusing 😭 Loading a trained Keras model and continue training is not the only problem I encountered. Will get back tomorrow with feedback

Schneider Nickolson

London | 2023-03-24

Maybe there are another answers? What Loading a trained Keras model and continue training exactly means?. Checked yesterday, it works!

Shop

Gifts for programmers

Learn programming in R: courses

$FREE
Gifts for programmers

Best Python online courses for 2022

$FREE
Gifts for programmers

Best laptop for Fortnite

$399+
Gifts for programmers

Best laptop for Excel

$
Gifts for programmers

Best laptop for Solidworks

$399+
Gifts for programmers

Best laptop for Roblox

$399+
Gifts for programmers

Best computer for crypto mining

$499+
Gifts for programmers

Best laptop for Sims 4

$

Latest questions

PythonStackOverflow

Common xlabel/ylabel for matplotlib subplots

1947 answers

PythonStackOverflow

Check if one list is a subset of another in Python

1173 answers

PythonStackOverflow

How to specify multiple return types using type-hints

1002 answers

PythonStackOverflow

Printing words vertically in Python

909 answers

PythonStackOverflow

Python Extract words from a given string

798 answers

PythonStackOverflow

Why do I get "Pickle - EOFError: Ran out of input" reading an empty file?

606 answers

PythonStackOverflow

Python os.path.join () method

384 answers

PythonStackOverflow

Flake8: Ignore specific warning for entire file

360 answers

News


Wiki

Python | How to copy data from one Excel sheet to another

Common xlabel/ylabel for matplotlib subplots

Check if one list is a subset of another in Python

How to specify multiple return types using type-hints

Printing words vertically in Python

Python Extract words from a given string

Cyclic redundancy check in Python

Finding mean, median, mode in Python without libraries

Python add suffix / add prefix to strings in a list

Why do I get "Pickle - EOFError: Ran out of input" reading an empty file?

Python - Move item to the end of the list

Python - Print list vertically