Pandas column of lists, create a row for each list element

StackOverflow

I have a dataframe where some cells contain lists of multiple values. Rather than storing multiple values in a cell, I"d like to expand the dataframe so that each item in the list gets its own row (with the same values in all other columns). So if I have:

import pandas as pd
import numpy as np

df = pd.DataFrame(
    {"trial_num": [1, 2, 3, 1, 2, 3],
     "subject": [1, 1, 1, 2, 2, 2],
     "samples": [list(np.random.randn(3).round(2)) for i in range(6)]
    }
)

df
Out[10]: 
                 samples  subject  trial_num
0    [0.57, -0.83, 1.44]        1          1
1    [-0.01, 1.13, 0.36]        1          2
2   [1.18, -1.46, -0.94]        1          3
3  [-0.08, -4.22, -2.05]        2          1
4     [0.72, 0.79, 0.53]        2          2
5    [0.4, -0.32, -0.13]        2          3

How do I convert to long form, e.g.:

   subject  trial_num  sample  sample_num
0        1          1    0.57           0
1        1          1   -0.83           1
2        1          1    1.44           2
3        1          2   -0.01           0
4        1          2    1.13           1
5        1          2    0.36           2
6        1          3    1.18           0
# etc.

The index is not important, it"s OK to set existing columns as the index and the final ordering isn"t important.

Answer rating: 108




Pandas >= 0.25

Series and DataFrame methods define a .explode() method that explodes lists into separate rows. See the docs section on Exploding a list-like column.

df = pd.DataFrame({
    "var1": [["a", "b", "c"], ["d", "e",], [], np.nan], 
    "var2": [1, 2, 3, 4]
})
df
        var1  var2
0  [a, b, c]     1
1     [d, e]     2
2         []     3
3        NaN     4

df.explode("var1")

  var1  var2
0    a     1
0    b     1
0    c     1
1    d     2
1    e     2
2  NaN     3  # empty list converted to NaN
3  NaN     4  # NaN entry preserved as-is

# to reset the index to be monotonically increasing...
df.explode("var1").reset_index(drop=True)

  var1  var2
0    a     1
1    b     1
2    c     1
3    d     2
4    e     2
5  NaN     3
6  NaN     4

Note that this also handles mixed columns of lists and scalars, as well as empty lists and NaNs appropriately (this is a drawback of repeat-based solutions).

However, you should note that explode only works on a single column (for now).

P.S.: if you are looking to explode a column of strings, you need to split on a separator first, then use explode. See this (very much) related answer by me.

Answer rating: 69

UPDATE: the solution below was helpful for older Pandas versions, because the DataFrame.explode() wasn’t available. Starting from Pandas 0.25.0 you can simply use DataFrame.explode().


lst_col = "samples"

r = pd.DataFrame({
      col:np.repeat(df[col].values, df[lst_col].str.len())
      for col in df.columns.drop(lst_col)}
    ).assign(**{lst_col:np.concatenate(df[lst_col].values)})[df.columns]

Result:

In [103]: r
Out[103]:
    samples  subject  trial_num
0      0.10        1          1
1     -0.20        1          1
2      0.05        1          1
3      0.25        1          2
4      1.32        1          2
5     -0.17        1          2
6      0.64        1          3
7     -0.22        1          3
8     -0.71        1          3
9     -0.03        2          1
10    -0.65        2          1
11     0.76        2          1
12     1.77        2          2
13     0.89        2          2
14     0.65        2          2
15    -0.98        2          3
16     0.65        2          3
17    -0.30        2          3

PS here you may find a bit more generic solution


UPDATE: some explanations: IMO the easiest way to understand this code is to try to execute it step-by-step:

in the following line we are repeating values in one column N times where N - is the length of the corresponding list:

In [10]: np.repeat(df["trial_num"].values, df[lst_col].str.len())
Out[10]: array([1, 1, 1, 2, 2, 2, 3, 3, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3], dtype=int64)

this can be generalized for all columns, containing scalar values:

In [11]: pd.DataFrame({
    ...:           col:np.repeat(df[col].values, df[lst_col].str.len())
    ...:           for col in df.columns.drop(lst_col)}
    ...:         )
Out[11]:
    trial_num  subject
0           1        1
1           1        1
2           1        1
3           2        1
4           2        1
5           2        1
6           3        1
..        ...      ...
11          1        2
12          2        2
13          2        2
14          2        2
15          3        2
16          3        2
17          3        2

[18 rows x 2 columns]

using np.concatenate() we can flatten all values in the list column (samples) and get a 1D vector:

In [12]: np.concatenate(df[lst_col].values)
Out[12]: array([-1.04, -0.58, -1.32,  0.82, -0.59, -0.34,  0.25,  2.09,  0.12,  0.83, -0.88,  0.68,  0.55, -0.56,  0.65, -0.04,  0.36, -0.31])

putting all this together:

In [13]: pd.DataFrame({
    ...:           col:np.repeat(df[col].values, df[lst_col].str.len())
    ...:           for col in df.columns.drop(lst_col)}
    ...:         ).assign(**{lst_col:np.concatenate(df[lst_col].values)})
Out[13]:
    trial_num  subject  samples
0           1        1    -1.04
1           1        1    -0.58
2           1        1    -1.32
3           2        1     0.82
4           2        1    -0.59
5           2        1    -0.34
6           3        1     0.25
..        ...      ...      ...
11          1        2     0.68
12          2        2     0.55
13          2        2    -0.56
14          2        2     0.65
15          3        2    -0.04
16          3        2     0.36
17          3        2    -0.31

[18 rows x 3 columns]

using pd.DataFrame()[df.columns] will guarantee that we are selecting columns in the original order...





Get Solution for free from DataCamp guru